BEAN - nowe materiały zmiennofazowe

| Technologia
Lawrence Berkeley National Laboratory

Dzięki współpracy Lawrence Berkeley National Laboratory oraz University of California, Berkeley, powstała nowa klasa materiałów zmiennofazowych. Tego typu materiały, dzięki możliwości zmiany faz pomiędzy stanem krystalicznym a amorficznym, świetnie nadają się do produkcji tanich, nieulotnych, energooszczędnych układów pamięci.

Uczeni z Berkeley stworzyli nanokryształy ze stopów metalu i półprzewodnika. Nowy materiał nazwano BEAN od binary eutectic-alloy nanostructure (binarne nanostruktury eutektyczno-stopowe).

Zmiana faz w BEAN, przełączanie ich pomiędzy stanami krystalicznym i amorficznym trwa nanosekundy i może być dokonana za pomocą prądu elektrycznego, lasera lub kombinacji obu tych metod. Nasze pierwsze BEAN stworzyliśmy ze stopu germanu i cyny. Byliśmy w stanie ustabilizować fazę krystaliczną i amorficzną oraz precyzyjnie dostroić kinetykę przełączania za pomocą prostej zmiany składu stopu - mówi Daryl Chrzan, jeden z twórców BEAN.

Stop germanu i cyny został wybrany dlatego, że w temperaturze pokojowej może istnieć w dwóch stabilnych stanach - krystalicznym bądź amorficznym. Chrzan i współpracujący z nim Joel Ager oraz Eugene Haller wykazali, że nanokryształy stopu germanu i cyny umieszczone na amorficznym ditlenku krzemu tworzą nanostruktury, które są w połowie krystalicznym metalem i w połowie krystalicznym półprzewodnikiem. Szybkie schładzanie następujące po rozpuszczeniu stopu impulem lasera prowadzi do powstania metastabilnej, amorficznej fazy w temperaturze pokojowej. Natomiast umiarkowane rozgrzanie materiału i jego powolne stygnięcie oznaczało powrót do krystalicznej podwójnej struktury - informuje Chrzan. Ditlenek krzemu działa jak inteligentna i bardzo czysta próbówka, która więzi w sobie nanostruktury tak, że interfejs BEAN/ditlenek krzemu powoduje powstanie wyjątkowych właściwości zmiennofazowych - dodaje.

Naukowcy nie zbadali jeszcze, jak odbywa się transport elektronów w materiale BEAN. Spodziewamy się, że w stanie amorficznym BEAN będzie wykazywało normalne, charakterystyczne dla metali przewodnictwo. W stanie podwójnym, BEAN będzie zawierał jedną lub więcej barier Schottky'ego, które mogą działać jak diody. Na potrzeby przechowywania danych, przewodzący stan metaliczny może oznaczać zero, a bariera Schottky'ego - jeden - wyjaśnia Chrzan.

Teraz naukowiec i jego koledzy badają, czy BEAN może wytrzymać wielokrotne przełączanie pomiędzy stanami oraz czy może zostać zaimplementowany w układzie scalonym. Chcą też utworzyć model przepływu energii w systemie i na jego podstawie opracować optymalną metodę wysyłania impulsów elektrycznych i/lub świetlnych, w celu jak najlepszego wykorzystania właściwości zmiennofazowych.

BEAN binary eutectic-alloy nanostructure materiał zmiennofazowy pamięci nieulotne german cyna Joel Ager Daryl Chrzan Eugene Haller