Lepsze magnesy dla Wielkiego Zderzacza

| Technologia
CERN

Naukowcy z amerykańskiego Fermi National Accelerator Laboratory kierują zespołem badaczy skupionych wokół projektu LARP, którego celem jest przygotowanie przyszłych udoskonaleń Wielkiego Zderzacza Hadronów. LARP, czyli LHC Accelerator Research Program, może pochwalić się poważnym sukcesem. Jest nim wyprodukowanie nowego magnesu, dzięki któremu jasność Zderzacza może wzrosnąć nawet 10-krotnie. Jasność to w przypadku LHC, liczba zderzeń cząsteczek w miejscach, w których znajduje się aparatura badawcza. Jej zwiększenie oznacza, że uczeni będą mieli dostęp do większej ilości danych.

Jak już pisaliśmy, każda z wiązek w LHC będzie składała się z 2808 paczek po 100 miliardów protonów każda. Gdy paczki będą się mijały, wśród 200 miliardów protonów dojdzie zaledwie do 20 zderzeń. Lepsze skupienie wiązek pozwoli w przyszłości zwiększyć liczbę kolizji. Jednak im ich więcej, tym więcej promieniowania i ciepła będzie docierało do magnesów. Obecnie wykorzystywane magnesy niobowo-tytanowe już teraz pracują na granicy swoich możliwości i nie wytrzymają warunków, które będą panowały po ulepszeniu LHC. Stąd konieczność stworzenia nowych magnesów. Uczonym z LARP już udało się je wyprodukować, a do ich stworzenia użyli niobu i cyny (Nb3Sn).

Stop tych materiałów wykazuje właściwości nadprzewodzące w wyższych temperaturach, a zatem magnesy są bardziej odporne na ich działanie. Ponadto generowane przez nie pole magnetyczne jest dwukrotnie silniejsze, co pozwoli na lepsze skupienie wiązek. Można się zatem zastanawiać, dlaczego od razu nie użyto Nb3Sn do budowy magnesów LHC. Otóż stop ten ma poważną wadę, jest kruchy i wrażliwy na zmiany ciśnienia. Ponadto, by zyskać właściwości nadprzewodzące w niskich temperaturach musi najpierw zostać ogrzany do 650-700 stopni Celsjusza. Dlatego też konieczne jest opracowanie nowych metod produkcji Nb3Sn oraz metod produkcji magnesów. O tym, że  nie jest to zadanie łatwe niech świadczy fakt, iż amerykański Departament Energii (DOE) od lat finansuje badania nad magnesami z Nb3Sn. Powoli osiągano kolejne sukcesy. W 1998 roku udało się stworzyć magnes, który generował pole magnetyczne o natężeniu 16 tesli, czyli dwukrotnie więcej niż wartości uzyskiwane w LHC.

Z kolei w 2005 DOE, CERN i LARP założyły, że do końca 2009 roku uda się stworzyć kwadrupolowy magnes o długości czterech metrów i gradiencie (czyli przyroście mocy pola magnetycznego) wynoszącym 200 tesli na metr. Założenia te udało się zrealizować przed dwoma tygodniami. Badania wykazały, że urządzenie spełnia oczekiwania naukowców. Jest w stanie wytrzymać nagłe przejścia ze stanu nadprzewodzącego do zwykłego przewodnictwa i związane z tym zmiany temperatury.

CERN już pogratulował naukowcom z LARP stwierdzając, że ich osiągnięcie nie tylko umożliwi zwiększenie jasności LHC, ale w ogóle przyczyni się do udoskonalenia technologii budowy akceleratorów cząstek.

Specjalistów czeka jeszcze dużo pracy, zanim nowe magnesy trafią do LHC. Chcą zwiększyć gradient w większych magnesach czteropolowych, sprawdzić gdzie znajdują się fizyczne granice możliwości nowych magnesów, przekonać się, czy większe magnesy będą pracowały równie dobrze jak małe prototypy, w końcu poprawić jakość generowanego pola magnetycznego. Nad nowymi magnesami pracują specjaliści z Fermilab, Brookhaven National Laboratory czy Berkeley Lab.

LHC Wielki Zderzacz Hadronów magnes nadprzewodzący niob tytan cyna LARP LHC Accelerator Research Program