Jak posadowić człowieka na Marsie?

| Astronomia/fizyka
NASA/JPL-Caltech

Wysłanie człowieka na Marsa wymaga rozwiązania całego szeregu problemów technicznych, a jednym z nich jest samo lądowanie na Czerwonej Planecie. Dotychczas najcięższym obiektem, jaki udało się na niej posadowić jest ważący 1 tonę łazik Curiosity. Tymczasem wysłanie bardziej złożonej misji automatycznej czy w końcu ludzi, będzie wymagało przeprowadzenia miękkiego lądowania obiektu o masie od 5 do 20 ton.

Christopher G. Lorenz i Zachary R. Putnam są autorami zamówionego przez NASA studium pt. „Entry Trajectory Options for High Ballistic Coefficient Vehicles at Mars”, które opublikowano w Journal of Spacecraft and Rockets.

Zwykle lądujący obiekt wchodzi w atmosferę Marsa z prędkością około 30 Mach, szybko zwalnia, rozwija spadochrony, a na końcu ląduje za pomocą silników lub poduszek powietrznych. Niestety spadochrony nie skalują się dobrze wraz z rosnącą masą obiektu. Nowy pomysł polega na rezygnacji ze spadochronu i wykorzystaniu większych silników rakietowych, mówi profesor Zach Putnam z University of Illinois at Urbana-Champaign.

Zaproponowana metoda zakłada, że gdy lądujący obiekt spowolni do prędkości Mach 3 zostaną uruchomione silniki hamujące o ciągu wstecznym, które na tyle go spowolnią, iż będzie mógł bezpiecznie wylądować. Problem jednak w tym, że manewr ten będzie wymagał dużej ilości paliwa. Paliwo to zwiększa masę misji, co z kolei czyni ją znacznie droższą, nie mówiąc już o tym, że to dodatkowe paliwo trzeba wynieść z powierzchni Ziemi, zużywając przy tym jeszcze więcej paliwa. Obecnie nie istnieje system rakietowy zdolny do wyniesienia takiej masy. Ponadto, co równie ważne, każdy kilogram paliwa oznacza kilogram mniej innego ładunku: ludzi, instrumentów naukowych, zaopatrzenia itp. itd.

Gdy pojazd porusza się z prędkością ponaddźwiękową to jeszcze przed uruchomieniem silników tworzy się siła nośna, którą możemy wykorzystać do sterowania. Jeśli przesuniemy środek ciężkości pojazdu tak, by był on bardziej obciążony z jednej strony, poleci on pod innym kątem. Mamy pewną możliwość kontroli podczas wejścia w atmosferę, obniżania lotu i lądowania. Przy prędkości ponaddźwiękowej możemy użyć siły nośnej do sterowania. Po uruchomieniu silników możemy ich użyć do bardzo precyzyjnego lądowania. Mamy więc do wyboru, albo spalić więcej paliwa, by wylądować z jak największą precyzją, albo nie przejmować się precyzją, oszczędzić paliwo i wysłać tam jak najcięższy pojazd, albo też znaleźć złoty środek pomiędzy tymi rozwiązaniami, wyjaśnia Putnam.

Zatem główne pytanie brzmi, jeśli wiemy, że będziemy uruchamiać silniki hamujące przy, powiedzmy, Mach 3, to jak powinniśmy sterować pojazdem by zużyć jak najmniej paliwa a zmaksymalizować masę ładunku. Wysokość, na jakiej uruchomimy silniki hamujące jest niezwykle ważna w celu maksymalizacji masy ładunku, jaką możemy wysłać. Ale również ważny jest kąt wektora prędkości pojazdu względem horyzontu, innymi słowy, jak ostro pojazd będzie nurkował, dodaje uczony.

Putnam i Lorenz przeprowadzili wyliczenia, które dały odpowiedź na pytanie o sposób najlepszego użycia siły nośnej i optymalne techniki kontroli przy maksymalnej masie pojazdu w zależności od konfiguracji pojazdu, warunków atmosferycznych oraz szerokości geograficznej na jakiej będzie on lądował.

Okazuje się, że najlepszym rozwiązaniem jest wejście w atmosferę tak, by wektor siły nośnej był skierowany w dół. Potem, w odpowiednim momencie, opierając się na czasie lub prędkości, należy podnieść wektor siły nośnej tak, by wyciągnąć pojazd z lotu nurkowego i żeby leciał on równolegle do planety na niskiej wysokości. Dzięki temu pojazd spędzi więcej czasu tam, gdzie atmosfera jest gęstsza, więc dodatkowo wyhamuje, dzięki czemu zaoszczędzimy paliwo potrzebne silnikom do lądowania.

Mars lądowanie człowiek misja załogowa