Mikroorganizmy glebowe już po paru tygodniach kolonizują i zaczynają rozkładać polimer PBAT
Po paru tygodniach mikroorganizmy glebowe kolonizują i zaczynają rozkładać powierzchnię polimeru - poli(adypinianu-co-tereftalanu butylenu), PBAT. To pokazuje, że warto by nim zastąpić polietylen, wykorzystywany np. w foliach do ściółkowania.
Naukowcy ze Szwajcarii wyjaśniają, że skażenie plastikiem zagraża glebom uprawnym, bo rolnicy z całego świata stosują bardzo dużo polietylenowej folii do ściółkowania. Zwalczają w ten sposób chwasty, podwyższają temperaturę gleby i utrzymują jej wilgotność, co łącznie pozwala zwiększyć plony.
Niestety, po zbiorach często trudno zebrać filmy w całości, zwłaszcza gdy mają one zaledwie parę mikrometrów grubości. Resztki akumulują się w glebie i ograniczają jej żyzność, zaburzają transport wody i ostatecznie - zmniejszają wzrost roślin.
W ramach ostatniego studium zespół z Politechniki Federalnej w Zurychu i Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz (Eawag) wykazał, że mikroorganizmy glebowe rozkładają folie z alternatywnego polimeru, wspominanego na początku PBAT. Autorzy publikacji z pisma Science Advances zademonstrowali, że węgiel z PBAT jest wykorzystywany do zwiększania biomasy i produkcji energii.
To badanie jako pierwsze pokazuje, że mikroorganizmy glebowe mineralizują filmy PBAT i transferują węgiel z polimeru do swojej biomasy - wyjaśnia Michael Sander.
Szwajcarzy podkreślają, że PBAT został już sklasyfikowany jako biodegradowalny w kompoście, dlatego zespół postanowił sprawdzić, czy ulega on biodegradacji także w glebach rolnych. Dla porównania, polietylen (PE) nie jest biodegradowany ani w kompoście, ani w glebie. W ostatnich latach potwierdzono tylko, że jest rozkładany zarówno przez bakterie z przewodu pokarmowego larw omacnicy spichrzanki (Plodia interpunctella), czyli mola spożywczego, jak i gąsienice barciaka większego (Galleria mellonella).
W eksperymentach wykorzystano materiał z PBAT, który zsyntetyzowano na zamówienie; miał on zawierać zadaną ilość stabilnego izotopu węgla 13C. Takie znakowanie izotopem pozwoliło naukowcom śledzić węgiel pochodzący z polimeru (biodegradując PBAT, bakterie uwalniały go bowiem z polimeru).
Za pomocą spektrometrii mas jonów wtórnych (NanoSIMS) akademicy odkryli, że 13C z PBAT był przekształcany w dwutlenek węgla w wyniku oddychania i stawał się częścią biomasy mikroorganizmów kolonizujących powierzchnię polimeru.
Dla odmiany, wiele polimerów po prostu kruszy się do drobnych kawałeczków, które pozostają w środowisku w postaci mikroplastiku [...] - opowiada Hans-Peter Kohler.
W ramach eksperymentu zespół wsypywał do szklanego naczynia 60 g gleby. Na tym podłożu umieszczano film z PBAT. Po 6 tygodniach inkubacji oceniano stopień skolonizowania powierzchni polimeru przez mikroorganizmy glebowe. Później analizowano ilość CO2 utworzonego w naczyniach oraz zawartość 13C.
Na razie Szwajcarzy nie wiedzą, w jakim czasie PBAT uległby degradacji w naturalnym środowisku. Dlatego też potrzeba długoterminowych badań terenowych na różnych glebach i w różnych warunkach.
Sander zaznacza, że nadal daleko nam do rozwiązania globalnego problemu skażenia plastikiem, ale zrobiliśmy 1. ważny krok w kierunku biodegradowalności plastików w glebie.
Wyniki dotyczące gleby nie mogą być jednak bezpośrednio transferowane na pozostałe środowiska naturalne. Ze względu na inne warunki oraz inne społeczności bakteryjne biodegradacja polimerów w słonej wodzie może np. być znacznie wolniejsza.
Jak dotąd tylko kilka koncernów chemicznych rozpoczęło produkcję i sprzedaż bardziej przyjaznych środowisku, ale i sporo droższych filmów z PBAT.
Komentarze (0)