Chłodzenie magnetyczne

| Astronomia/fizyka
Jose-Luis Olivares

Magnesy z lodówkami łączy głównie fakt, że wykorzystujemy je do przyczepiania różnych rzeczy na drzwiczkach. Jednak dzięki pracom badaczy z MIT-u magnesy mogą stać się głównymi elementami chłodzącymi lodówek.

Studenci Bolin Liao i Jiawei Zhou pracujący pod kierunkiem dziekana Wydziału Inżynierii Magnetycznej, opublikowali teorię opisującą ruch magnonów. To kwazicząsteczki, które są wynikiem wzbudzeń spinowych. Magnony przechowują moment magnetyczny i przewodzą ciepło. Naukowcy z MIT-u obliczyli, że magnonami można sterować za pomocą gradientu pola magnetycznego, przesuwając je z jednego końca magnesu do drugiego. Wraz z magnonami wędrowałoby ciepło i powstawałby efekt chłodzący. Skoro możesz przepompować ciepło z jednej strony na drugą, to możesz użyć magnesu w roli lodówki - mówi Bolin Liao. Taka teoretyczna lodówka nie posiadałaby ruchomych części. W obecnych lodówkach konieczne jest przepompowywanie płynu chłodzącego. Naukowcy zyskali teraz teoretyczne podstawy pozwalające na badanie ruchu magnonów w polu magnetycznym i gradiencie temperatury. Opracowane przez nas równania opisują transport magnonów - dodaje Liao.

W ferromagnetykach momenty magnetyczne poruszają się w różnych kierunkach. W temperaturze zera absolutnego dochodzi do uporządkowania momentów magnetycznych i magnes wykazuje najsilniejsze właściwości. W miarę wzrostu temperatury siła magnesu słabnie, gdyż coraz więcej lokalnych momentów magnetycznych „wyłamuje się” ze wspólnego uporządkowania. Pojawia się zatem duża liczba magnonów.

Magnony są nieco podobne do elektronów. Te drugie mogą jednocześnie przenosić ładunek i przewodzić ciepło. Elektrony poruszają się w odpowiedzi albo na pole elektryczne, albo na gradient temperatury. Tę drugą właściwość znamy pod nazwą zjawiska termoelektrycznego. Od niedawna trwają badania, których celem jest stworzenie generatorów termoelektrycznych, które zmieniałyby ciepło bezpośrednio w prąd elektryczny.

Liao i jego koledzy postanowili wykorzystać podobne zjawisko występujące w magnesach. Magnony również poruszają się w odpowiedzi na dwie siły – gradient temperatury lub pole magnetyczne. Młodzi uczeni wykorzystali więc równanie transportu Boltzmanna, które jest często używane do obliczania transportu elektronów w termoelektrykach. Z niego wywiedli dwa nowe równania, opisujące transport magnonów. Na ich podstawie opisali efekt chłodzący magnonów poruszających się pod wpływem gradientu pola magnetycznego.

Z równań wynika, że im niższa temperatura, tym silniejszy efekt chłodzący. Dlatego też nowa teoria może po raz pierwszy znaleźć zastosowanie w laboratorium naukowym, tam, gdzie potrzebne jest bezprzewodowe schłodzenie jakiegoś elementu. Na obecnym etapie rozwoju sądzimy, że wchodzą tutaj w grę zastosowania kriogeniczne, na przykład schładzanie czujników podczerwieni. Musimy jednak potwierdzić to eksperymentalnie i poszukać materiałów, w których efekt ten będzie silniejszy. Mamy nadzieję, że to zmotywuje inne zespoły naukowe do prowadzenia własnych eksperymentów - mówi Chen.

magnes magnon chłodzenie