Nasze mózgi wytwarzają więcej neuronów niż mózgi neandertalczyków?
Pojedyncza zmiana w jednym z aminokwasów w proteinie TKTL1 spowodowała, że w płatach czołowych Homo sapiens produkcja neuronów była większa niż u neandertalczyków. Odkrycie dokonane przez naukowców z Instytutu Molekularnej Biologii Komórkowej i Genetyki im. Maxa Plancka w Dreźnie może wyjaśniać, dlaczego to my jesteśmy jedynym gatunkiem człowieka, jaki obecnie chodzi po Ziemi.
Naukowcy od dziesięcioleci próbują odpowiedzieć na pytanie, co dało nam przewagę nad naszymi krewniakami. Wiemy, że nasze mózgi mają podobną wielkość do mózgów neandertalczyków, jednak niewiele wiemy o ich rozwoju i produkcji neuronów. Niedawno dowiedzieliśmy się, że mózg neandertalczyka popełniał podczas rozwoju więcej błędów, niż mózg człowieka współczesnego.
Uczeni z Drezna wykazali właśnie, że obecny u H. sapiens wariant proteiny TKTL1 – który od TKTL1 neandertalczyka różni się tylko jednym aminokwasem – zwiększa produkcję produkcję komórek progenitorowych w korze nowej, odpowiedzialnej za wiele procesów poznawczych. Jako, że TKTL1 jest szczególnie aktywna w płatach czołowych podczas rozwoju płodowego, naukowcy doszli do wniosku, że ta zmiana w pojedynczym aminokwasie spowodowała, że w płacie czołowym tworzącego się mózgu H. sapiens powstawało więcej neuronów niż w mózgach H. neanderthalensis.
Jeśli porównamy białka H. sapiens i naszych najbliższych krewnych – neandertalczyków i denisowian – zauważymy, że zmiany w sekwencji aminokwasów występują w bardzo niewielkiej liczbie protein. W większości przypadków nie wiemy, jakie jest znaczenie tych zmian.
Naukowcy z Drezna skupili się podczas swoich badań na TKTL1. Zauważyli, że we współczesnym wariancie tej proteiny w jednej z sekwencji występuje arginina, podczas gdy u neandertalczyków w tym miejscu jest lizyna. Postanowili więc zbadać, jakie znaczenie ma ta zmiana. Podczas badań wykorzystali mysie embriony. Do ich kory nowej wprowadzali albo TKTL1 właściwe dla H. sapiens albo neandertalczyków. Zauważyli, że u embrionów, którym wstrzyknięto proteinę od H. sapiens zwiększyła się liczba komórek gleju radialnego i ostatecznie mózgi tych embrionów miały więcej neuronów. Zjawiska takiego nie stwierdzono u embrionów z wstrzykniętym TKTL1 neandertalczyków.
Po tym odkryciu uczeni postanowili sprawdzić, jakie ma to znaczenie dla ludzkiego mózgu. Tutaj do badań użyli organoidów ludzkiego mózgu. Organoidy to komórki hodowane tak, by tworzyły miniaturowe uproszczone wersje narządów, które chcemy badać. W organoidach ludzkiego mózgu argininę w odpowiedniej sekwencji TKTL1 zastąpili lizyną, jak i neandertalczyków. Stwierdziliśmy, że w organoidach mózgu z neandertalską wersją TKTL1 pojawiło się mniej komórek gleju radialnego i, w konsekwencji, mniej neuronów, mówi Anneline Pinson. To nam pokazuje, że chociaż nie wiemy, ile neuronów miał mózg neandertalczyka, możemy przyjąć, że człowiek współczesny ma więcej neuronów w płacie czołowym – gdzie TKTL1 jest najbardziej aktywny – niż neandertalczyk, dodaje.
Badacze zauważyli również, że TKTL1 u człowieka współczesnego prowadzi do zmiany metabolizmu, w szczególności do stymulacji szlaku pentozofosforanowego co skutkuje zwiększoną syntezą kwasów tłuszczowych. W ten sposób, jak przypuszczają, TKTL1 zwiększa syntezę pewnych lipidów błony komórkowej, stymulujących proliferację komórek gleju gwiaździstego, a to w konsekwencji skutkuje większą liczbą neuronów. Prawdopodobne staje się więc przypuszczenie, że dzięki pojedynczej zmianie aminokwasu H. sapiens zyskał większe zdolności poznawcze, dzięki czemu wygrał rywalizację z innymi gatunkami człowieka.
Komentarze (0)