Drugie zderzenie gwiazd neutronowych. Para była zaskakująco masywna

| Astronomia/fizyka
National Science Foundation/LIGO/Sonoma State University/A. Simonnet

Po raz drugi w historii LIGO zarejestrował fale grawitacyjne pochodzące ze zderzenia gwiazd neutronowych. Pierwsze tego typu wydarzenie udało się zarejestrować 2,5 roku temu.

Najnowsze zderzenie zostało zarejestrowane 25 kwietnia ubiegłego roku. Naukowcy, którzy analizowali dane, stwierdzili, że łączna masa obu gwiazd wynosiła 3,4 masy Słońca. To interesujące odkrycie, gdyż dotychczas nigdy nie zaobserwowano pary gwiazd neutronowych, która miałaby masę większą niż 2,9 masy Słońca. Ta para była wyraźnie cięższa niż jakakolwiek inna zaobserwowana dotychczas para gwiazd neutronowych, mówi Katerina Chatziioannou z nowojorskiego Flatiron Institute.

Uczona dodała, że nie można wykluczyć, iż doszło do zderzenia czarnych dziur lub czarnej dziury z gwiazdą neutronową, ale jest to mało prawdopodobne, gdyż nigdy wcześniej nie zaobserwowano tak małych czarnych dziur.

Nie wiadomo, dlaczego dotychczas teleskopy nie zaobserwowały pary gwiazd neutronowych o tak dużej masie. Teraz, gdy wiadomo, że pary takie istnieją, teoretycy będą musieli wyjaśnić, dlaczego widać je w wykrywaczach fal grawitacyjnych, a nie w teleskopach.

Gdy tylko LIGO wykrywa fale grawitacyjne, zostaje wysłany alert wraz z informacją o pozycji źródła tych fal. Dzięki temu astronomowie z całego świata mogą rozpocząć obserwacje wskazanego miejsca. Kiedy detektor odkrył pierwsze zderzenie gwiazd neutronowych, wysłany alert pozwolił zaobserwować rozbłysk gamma pochodzący ze starej galaktyki położonej w odległości około 130 milionów lat świetlnych od Ziemi.

Jednak tym razem niczego nie wykryto. Żadna grupa naukowa nie poinformowała dotychczas o zauważeniu rozbłysku w miejscu i czasie, które zgadzałyby się z zarejestrowanymi falami. Mogło się tak stać dlatego, że fale wykrył tylko jeden z detektorów LIGO, ten znajdujący się w Livingston w stanie Louisiana. Drugi z nich, z Hanford w stanie Waszyngton, był czasowo wyłączony, a europejski Virgo w pobliżu Pizy jest zbyt mało czuły, by zauważyć te fale.

Zwykle mamy więc do dyspozycji trzy wykrywacze systemu LIGO-Virgo. Mogą one nawzajem potwierdzać swoje obserwacje, a dzięki triangulacji możliwe jest dokładne określenie źródła fal. Fakt, że tym razem mamy dane tylko z jednego z nich pozwala na stwierdzenie, że do zderzenia gwiazd doszło w odległości większej niż 500 milionów lat świetlnych od Ziemi gdzieś w obszarze obejmujący niemal 20% nieboskłonu.

Danym zarejestrowanym przez LIGO możemy jednak zaufać. Urządzenia działają już na tyle długo, że naukowcy potrafią odróżnić prawdziwy sygnał od zakłócenia, nawet jeśli mają do dyspozycji tylko jeden wykrywacz.

Chatziioanou przypomina, że gdy dochodzi do zderzenia gwiazd neutronowych, powstaje czarna dziura. W tym wypadku mogła ona powstać tak szybko, że natychmiast wchłonęła wszelkie światło, co wyjaśniałoby brak obserwacji. Ponadto strumień energii, który pochodził z takiego wydarzenia, mógł zostać skierowany w inną stronę niż Ziemia.
Naukowcy nadal jednak badają to wydarzenie, więc nie można wykluczyć, że dowiemy się o nim więcej.

W ciągu najbliższych kilku tygodni uruchomiony zostanie japoński wykrywacz fal grawitacyjnych KAGRA. Czwarte takie urządzenie pozwoli na jeszcze bardziej precyzyjne wykrywanie jeszcze większej liczby fal grawitacyjnych.

LIGO Virgo fale grawitacyjne czarna dziura gwiazdy neutronowe