Marsjański łazik będzie strzelał laserem, nasłuchiwał dźwięków i przygotuje próbki do zabrania na Ziemię

| Astronomia/fizyka
NASA

Łazik Perseverance, który wylądował wczoraj na Marsie w ramach misji Mars 2020, to dziewiąta udana marsjańska misja NASA w czasie której przeprowadzono miękkie lądowanie na powierzchni planety. Łazik będzie badał marsjańską geologię i klimat, zbierał dane potrzebne do przeprowadzenia załogowej misji na Marsa i – co jest jego głównym celem – będzie poszukiwał śladów dawnego życia.

Dlatego też na miejsce lądowania łazika wybrano tak trudny teren jak Krater Jezero. Naukowcy sądzą, że 3,5 miliarda lat temu krater ten był dnem jeziora, do którego szeroką deltą wpływała rzeka. Co prawda wody dawno tam nie ma, ale specjaliści wierzą, na na dnie krateru o średnicy 45 kilometrów lub na jego zboczach, wznoszących się w górę na 610 metrów, zachowały się ślady dawnego życia. Myślimy, że najlepszym miejscem do poszukiwania biosygnatur są osady z dna Jezero lub jego linii brzegowej. Mogą się tam znajdować minerały zawierające węgiel, o których wiemy, że bardzo dobrze przechowują się w nich pozostałości dawnego życia na Ziemi.

Perseverance to piąty łazik, jaki NASA umieściła na Czerwonej Planecie. Obok Curiosity, który pracuje na Marsie od 2012 roku, i Opportunity, którego misja niedawno się zakończyła po przepracowaniu 5351 marsjańskich dni (sol), były to Spirit z 2004 roku, który pracował przez 2208 soli oraz Sojourner, pierwszy łazik w historii, pracujący na innej planecie.

W poszukiwaniu biosygnatur Perseverance wykorzysta Mastcam-Z. To umieszczona na maszcie kamera, która może wykonywać przybliżenia odległych obiektów, by naukowcy mogli się im przyjrzeć. Gdy specjaliści stwierdzą, że obiekt wart jest bliższego zbadania, do dzieła przystąpi SuperCam. To kamera wyposażona w laser i mikrofon. W stronę interesującego celu zostanie wystrzelona wiązka laserowa. Odparowany laserem materiał utworzy niewielką chmurę plazmy, którą zarejestruje SuperCam, a analiza obrazu pozwoli określić skład chemiczny celu. Mikrofon przechwyci zaś dźwięk z całego wydarzenia, co dostarczy dodatkowych informacji do analizy. Jeśli na tej podstawie uczeni uznają, że danej skale czy fragmentowi gruntu warto się przyjrzeć, mogą wydać łazikowi polecenie podjechania i zbadania próbek.

Próbki będą badane przez robotyczne ramię, na którego końcach znajdują się dwa instrumenty. PIXL (Planetary Instrument for X-ray Lithochemistry) przeprowadzi badania za pomocą silnego promieniowania rentgenowskiego w poszukiwaniu w nim chemicznych oznak dawnego życia. Z kolei SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals) posiada własny laser i może wykrywać niewielkie ilości molekuł organicznych oraz minerałów tworzących się w środowisku wodnym. Razem PIXL i SHERLOC stworzą mapę minerałów, pierwiastków i molekuł w skałach i mariańskiej glebie.

Naukowcy mają nadzieję, że trafią na coś, co jednoznacznie będzie można zinterpretować jako ślady dawnego życia. Czymś takim mogą być np. stromatolity. To formacje skalne będące ubocznym skutkiem życia sinic. Na Ziemi są to jedne z najstarszych śladów życia.

Jeśli PIXL i SHERLOC pokażą, że mamy do czynienia z czymś naprawdę interesującym, ramię łazika pobierze próbki. Zostaną one umieszczone w specjalnych tubach, które w ramach przyszłych misji marsjańskich zostaną zabrane na Ziemię. Instrumenty konieczne, by definitywnie potwierdzić, że na Marsie w przeszłości istniało życie są zbyt duże i złożone, by dostarczyć je na Marsa. Dlatego też NASA we współpracy z Europejską Agencją Kosmiczną planuje składający się z wielu misji program Mars Sample Return, którego celem jest przywiezienie na Ziemię próbek zebranych przez Perseverance, mówi Bobby Braun, menedżer programu Mars Sample Return.

Dysponujemy mocnymi dowodami wskazującymi, że w Kraterze Jezero istniały niegdyś warunki do istnienia życia. Nawet jeśli po analizie próbek na Ziemi stwierdzimy, że w jeziorze nie było życia, nauczymy się czegoś ważnego o możliwości istnienia życia w kosmosie. To, czy na Marsie życie istniało czy nie, jest podstawowym pytaniem dotyczącym ewolucji planet skalistych. Dlaczego nasza planeta jest bogata w życie, podczas gdy Mars stał się martwym pustkowiem?, wyjaśnia Ken Williford, zastępca głównego naukowca misji Mars 2020 Perseverance.

Wspomniana tutaj Mars Sample Return ma rozpocząć się w drugiej połowie bieżącej dekady. Będzie się ona składała z pojazdu Sample Retrieval lander, który dostarczy na powierzchnię marsa łazik Sample Fetch Rover oraz pojazd Mars Ascent Vehicle. Łazik zabierze przygotowane przez Perseverance pojemniki z próbkami i przetransportuje je do pojemnika znajdującego się na dziobie pojazdu Mars Ascent Vehicle. Ewentualnie będzie to mógł też zrobić Perseverance.

Mars Ascent Vehicle będzie pierwszym pojazdem, który wystartuje z powierzchni innej planety. Dotrze on na orbitę Marsa, gdzie uwolni pojemnik z próbkami. Tam przejmie je Earth Return Orbiter. Próbki trafią do kolejnego pojemnika i wraz z nim mają wylądować na Ziemi na początku przyszłej dekady.

Misja Mars Sample Return będzie bardzo istotna z punktu widzenia załogowej eksploracji Marsa. W jej ramach na powierzchni wyląduje bowiem rekordowo masywny ładunek, będzie też można przeprowadzić testy startu z powierzchni Czerwonej Planety.

Perseverance Mars 2020 próbki Mars Sample Return