Potężny wiatr i deszcz z kamieni szlachetnych, pierwszy dokładny obraz nocnej strony egzoplanety
Astronomowie z MIT uzyskali najdokładniejszy obraz atmosfery nocnej strony egzoplanety znajdującej się w obrocie synchronicznym wokół swojej gwiazdy. Przeszliśmy z etapu badania izolowanych regionów atmosfery egzoplanet, to badania ich takimi jakimi naprawdę są – trójwymiarowymi systemami, mówi Thomas Mikal-Evans, lider grupy badawczej z Kavli Institute for Astrophysics and Space Research.
Z obrotem synchronicznym mamy do czynienia na przykład w układzie Ziemia-Księżyc. Srebrny Glob, obracając się synchronicznie wokół naszej planety, jest wystawiony w jej kierunku zawsze tą samą stroną. W przypadku wspomnianej planety WASP-121b oznacza to, że po jednej jej stronie panuje wieczny dzień, a po drugiej – wieczna noc.
WASP-121b to gorący Jowisz odkryty w 2015 roku. Krąży wokół gwiazdy znajdującej się około 850 lat świetlnych od Ziemi. Ma też jedną z najciaśniejszych orbit. Pełny obieg wokół gwiazdy zajmuje planecie około 30 godzin.
Już wcześniej po dziennej stronie WASP-121b odkryto parę wodną, a naukowcy badali, jak wraz ze wzrostem wysokości zmienia się temperatura atmosfery. Teraz zaś udało się zbadać nocną stronę planety, zmapować zmiany temperatury pomiędzy stroną nocną a dzienną i pokazać, jak temperatury zmieniają się wraz ze wzrostem wysokości. Po raz pierwszy też zbadano przemieszczanie się pary wodnej pomiędzy obiema stronami egzoplanety obracającej się synchronicznie wokół gwiazdy.
Ziemia, której siły pływowe gwiazdy nie zamknęły w obrocie synchronicznym, doświadcza dnia i nocy, a cykl obiegu wody polega w dużej mierze na parowaniu, kondensacji i tworzeniu chmur oraz opadach.
Jednak na WASP-121b zachodzą niezwykle dramatyczne zjawiska. Na dziennej stronie, gdzie temperatury przekraczają 2700 stopni Celsjusza, molekuły wody są rozbijane na tworzące je atomy wodoru i tlenu. Wiatry wydmuchują te atomy na stronę nocną. Tam panują niższe temperatury i dochodzi do ponownego utworzenia molekuł wody. Te zaś ponownie wędrują na stronę dzienną i proces się powtarza. Ten gwałtowny cykl obiegu wody jest napędzany przez równie gwałtowne wiatry wiejące wokół planety z prędkością dochodzącą do 18 000 kilometrów na godzinę.
Jednak wokół planety krąży nie tylko woda. Jej nocna strona jest na tyle chłodna, że powstają tam chmury z żelaza i korundu (Al2O3), minerału tworzącego rubiny czy szafiry. Chmury te mogą również być wypychane na dzienną stronę, gdzie dochodzi do odparowywania minerału. Gdzieś po drodze mogą spaść deszcze. Ale na WASP-121b nie pada woda. Z nieba mogą tam lecież kamienie szlachetne.
Dzięki tym obserwacjom mamy obraz atmosfery całej planety, cieszy się Mikal-Evans. A obserwacji dokonano za pomocą spektroskopu znajdującego się na pokładzie Teleskopu Hubble'a. Analizuje on światło pochodzące z atmosfery, rozbija je na składowe długości fali i na tej podstawie dostarcza danych, dzięki którym astronomowie mogą określić temperaturę i skład atmosfery. Wielokrotnie w ten sposób obserwowano dzienną stronę różnych egzoplanet. Badanie strony nocnej jest znacznie trudniejsze. Wymaga bowiem śledzenia niewielkich zmian w spektrum światła z planety, do których dochodzi, gdy okrąża ona swoją gwiazdę. Naukowcom z MIT ta sztuka się udała.
Byli w stanie określić profil temperatury całej atmosfery. Dowiedzieli się, że w najgłębszych warstwach atmosfery po stronie dziennej temperatura nieco przekracza 2200 stopni Celsjusza, a w warstwach najwyższych wynosi ona ponad 3200 stopni. Natomiast po stronie nocnej temperatura warstwy najniższej wynosi nieco ponad 1500 stopni Celsjusza, by w warstwie najwyższej spaść do około 1200 stopni. Model komputerowy użyty do zbadania gradientu temperatur na różnych wysokościach wykazał, że po stronie nocnej mogą istnieć chmury złożone m.in. z żelaza, korundu i tytanu.
Najgorętsze miejsce planety znajduje się bezpośrednio pod jej gwiazdą, jednak region ten jest przesuwany przez silne wiatry na wschód, zanim ciepło zdąży uciec w przestrzeń kosmiczną. To właśnie z wielkości tego przesunięcia wyliczono prędkość wiatru. Wiejące tam wiatry są znacznie potężniejsze niż ziemski prąd strumieniowy. Prawdopodobnie może on przemieścić chmury wokół całej planety w czasie około 20 godzin, mówi współautor badań, Tansu Daylan.
Naukowcy już zarezerwowali sobie czas obserwacyjny na Teleskopie Kosmicznym Jamesa Webba. Mają nadzieję, że za jego pomocą będą mogli obserwować nie tylko przemieszczanie się wody, ale i dwutlenku węgla w atmosferze. Ilość węgla i tlenu w atmosferze może znam zdradzić, gdzie dochodzi do formowania się tego typu planet, wyjaśnia Mikal-Evans.
Komentarze (0)