Zarejestrowano kwantowy szum Barkhausena. Największe zjawisko kwantowe w laboratorium?
W materiałach ferromagnetycznych spiny grup elektronów zwrócone są w tym samym kierunku. Dotyczy to jednak poszczególnych regionów (domen magnetycznych), spiny pomiędzy domenami nie są uzgodnione. Wszystko się zmienia w obecności pola magnetycznego. Wówczas spiny wszystkich domen ustawiają się w tym samym kierunku. Zjawisko to nie zachodzi jednak jednocześnie, a przypomina lawinę, w której jedne domeny wpływają na drugie, aż ułożą się w tym samym kierunku.
Istnienie takiej lawiny w magnesach zostało po raz pierwszy wykazane przez fizyka Heinricha Barkhausena w 1919 roku. Nawinął on cewkę na materiał o właściwościach magnetycznych i podłączył ją do głośnika. Wykazał, że zmiany magnetyzmu ujawniają się w postaci trzeszczącego dźwięku. Zjawisko to zostało nazwane szumem Barkhausena.
Teraz naukowcy z Caltechu (California Institute of Technology) oraz University of British Columbia wykazali, że szum Barkhausena można zarejestrować nie tylko metodami klasycznymi, ale wykorzystując zjawiska z dziedziny mechaniki kwantowej. Ich osiągnięcie może znaleźć zastosowanie w budowie kwantowych czujników i innych urządzeń elektronicznych.
Szum Barkhausena to wynik grupowego przełączania się malutkich magnesów. Przeprowadziliśmy ten sam eksperyment, który pokazywano wiele razy, ale wykorzystaliśmy w tym celu materiał kwantowy. Widzimy tutaj efekty kwantowe prowadzące do zmian w skali makroskopowej, wyjaśnia główny autor artykułu, Christopher Simon z Caltechu.
Na gruncie fizyki klasycznej wspomniane przełączanie odbywa się dzięki temu, że cząsteczki chwilowo uzyskują wystarczająco dużo energii, by przeskoczyć ponad barierą potencjału. Amerykańsko-kanadyjski zespół wykazał właśnie, że zmiana kierunku spinów domen magnetycznych może dokonać się również za pomocą zjawiska kwantowego tunelowania. W procesie tym cząsteczki przedostają się na drugą stronę bariery potencjału, nie przeskakując nad nią. Naukowcy porównują to do piłeczki golfowej, która by znaleźć się po drugiej stronie wzgórza nie musiałaby przelatywać nad jego szczytem. W świecie kwantowym piłeczka nie musi przedostawać się nad wzgórzem, gdyż jest falą i jej część już jest po drugiej stronie wzgórza, dodaje Simon.
Naukowcy wykorzystali fluorek litowo-holmowo-itrowy (LiHoxY1−xF4) schłodzony do temperatur od 90 mK do 580 mK (od 15 do 95 procent temperatury Curie). Wokół ferromagnetyka owinięto cewkę, włączyli pole magnetyczne i obserwowali krótkie skoki napięcia. Skoki te pokazywały, kiedy domeny zmieniały orientację spinu. Seria takich skoków napięcia to właśnie szum Barkhausena. Analizując go uczeni wykazali, że zmiana spinów miała miejsce również bez obecności zjawisk klasycznych i dowiedli, że odpowiedzialne były zjawiska kwantowe.
Komentarze (0)