Naukowcom udało się poznać niektóre właściwości einsteinu
W Lawrence Berkeley National Laboratory (LBNL) udało się dokonać pierwszych pomiarów długości wiązania atomowego einsteinu. To jedna z podstawowych cech interakcji pierwiastka z innymi atomami i molekułami. Mimo, że einstein został odkryty przed 70 laty, to wciąż niewiele o nim wiadomo. Pierwiastek jest bowiem bardzo trudny do uzyskania i wysoce radioaktywny.
Einstein został odkryty w 1952 roku przez Alberta Ghiorso w pozostałościach po wybuchu bomby termojądrowej. W czasie eksplozji jądro 238U wychwytuje 15 neutronów i powstaje 253U, który po emisji 7 elektronów zmienia się w 253Es.
Zespół naukowy pracujący pod kierunkiem profesor Rebeki Abergel z LBNL i Stosha Kozimora z Los Alamos National Laboratory, miał do dyspozycji mniej niż 250 nanogramów pierwiastka. Niezbyt wiele wiadomo o einsteinie. To spore osiągnięcie, że udąło się nam przeprowadzić badania z zakresu chemii nieorganicznej. To ważne, gdyż teraz lepiej rozumiemy zachowanie tego pierwiastka, co pozwoli nam wykorzystać tę wiedzę do opracowania nowych materiałów i nowych technologii. Niekoniecznie zresztą z udziałem einsteinu, ale również z użyciem innych aktynowców. Lepiej poznamy też tablicę okresową pierwiastków, mówi Abergel.
Badania prowadzono w nowoczesnych jednostkach naukowych: Molecular Foundry w Berkeley Lab i Stanford Synchrotron Radiation Lightsource w SLAC National Accelerator Laboratory. Wykorzystano przy tym spektroskopię luminescencyjną i absorpcję rentgenowską.
Jednak zanim przeprowadzono badania trzeba było pozyskać sam einstein. To nie było łatwe. Pierwiastek został wytworzony w High Flux Isotope Reactor w Oak Ridge National Laboratory. To jedno z niewielu miejsc na świecie, gdzie można produkować einstein. Wytwarza się go bombardując kiur neutronami. Wywołuje to cały łańcuch reakcji chemicznych. I tutaj pojawił się pierwszy problem. Próbka była mocno zanieczyszona kalifornium. Uzyskanie odpowiedniej ilości czystego einsteinu jest bowiem niezwykle trudne.
Zespół naukowy musiał więc zrezygnować z pierwotnego planu wykorzystania krystalografii rentgenowskiej, czyli techniki uznawanej za złoty standard przy badaniu struktury wysoce radioaktywnych próbek. Technika to wymaga bowiem otrzymania czystej metalicznej próbki. Konieczne stało się więc opracowanie nowej techniki badawczej, pozwalającej na określenie struktury einsteinu w zanieczyszczonej próbce. Z pomocą przyszli naukowcy z Los Alamos, który opracowali odpowiedni instrument utrzymujący próbkę.
Później trzeba było poradzić sobie z rozpadem einsteinu. Uczeni wykorzystywali 254, jeden z bardziej stabilnych izotopów, o czasie półrozpadu wynoszącym 276 dni. Zdążyli wykonać tylko część zaplanowanych eksperymentów, gdy doszło do wybuchu pandemii i laboratorium zostało zamknięte. Gdy naukowcy mogli do niego wrócić, większość pierwiastka zdążyła już ulec rozpadowi.
Mimo to udało się zmierzyć długość wiązań atomowych oraz określić pewne właściwości einsteinu, które okazały się odmienne od reszty aktynowców. Określenie długości wiązań może nie brzmi zbyt interesująco, ale to pierwsza rzecz, którą chcą wiedzieć naukowcy, badający jak metale łączą się z innymi molekułami. Jaki rodzaj interakcji chemicznych się pojawia, gdy badany atom wiąże się z innymi, mówi Abergel.
Gdy już wiemy, jak będą układały się atomy w molekule zawierającej einstein, możemy poszukiwać interesujących nas właściwości chemicznych takich molekuł. Pozwala to też określać trendy w tablicy okresowej pierwiastków. Mając do dyspozycji takie dane lepiej rozumiemy jak zachowują się wszystkie aktynowce. A mamy wśród nich pierwiastki i ich izotopy, które są przydatne w medycynie jądrowej czy w produkcji energii, wyjaśnia profesor Abergel.
Odkrycie pozwoli też zrozumieć to, co znajduje się poza obecną tablicą okresową i może ułatwić odkrycie nowych pierwiastków. Teraz naprawdę lepiej zaczynamy rozumieć, co dzieje się w miarę zbliżania się do końca tablicy okresowej. Możemy też zaplanować eksperymenty z użyciem einsteinu, które pozwolą nam na odkrycie kolejnych pierwiastków. Na przykład pierwiastki, które poznaliśmy w ciągu ostatnich 10 lat, jak np. tenes, były odkrywane dzięki użyciu berkelu. Jeśli będziemy w stanie uzyskać wystarczająco dużo czystego einsteinu, możemy wykorzystać ten pierwiastek jako cel w eksperymentach, w czasie których wytwarza się nowe pierwiastki. W ten sposób zbliżmy się do – teoretycznie wyliczonej – wyspy stabilności.
Ta poszukiwana wyspa stabilności to teoretycznie wyliczony obszar tablicy okresowej, gdzie superciężkie pierwiastki mogą istnieć przez minuty, a może nawet dni, w przeciwieństwie do obecnie znanych superciężkich pierwiastków istniejących, których czas półrozpadu liczony jest w mikrosekundach.
Komentarze (0)