Organiczny system do obrazowania z fosfolipidów
Aparatura medyczna podlega coraz większej miniaturyzacji, do jej konstruowania coraz częściej wykorzystuje się też materiały pochodzące z ludzkiego ciała. Bez wątpienia ciekawym pomysłem jest mikroskopijny, a w dodatku organiczny system do obrazowania z wbudowanymi nanoprzetwornikami z fosfolipidów występujących w błonach komórkowych.
Dr Melissa Mather z Uniwersytetu w Nottingham wyjaśnia, że urządzenie można zastosować do wczesnego wykrywania nowotworów, monitorowania aktywności elektrycznej mózgu oraz śledzenia pojedynczych komórek podczas podróży przez organizm. Brytyjczycy cieszą się z tego, że nanoaparat do obrazowania jest zupełnie nietoksyczny, powstaje przecież z tego, co i tak występuje w ciele.
Systemy do monitorowania komórek i tkanek są coraz bardziej potrzebne. Prężnie rozwijają się terapie komórkowe, ale by mieć pewność, że leczenie [parkinsonizmu, cukrzycy czy choroby serca] przebiega właściwie, należy monitorować miejsce, do którego trafiły komórki oraz ich zachowanie. To spory problem dla współczesnych technologii i staramy się temu jakoś zaradzić.
Przetworniki elektromechaniczne były do tej pory budowane przede wszystkim z pojedynczych kryształów lub ceramiki. Niedawno jednak naukowcy zorientowali się, że jeśli zminiaturyzuje się je do skali nano, można w nich wykorzystywać o wiele więcej różnych materiałów. Wykazano, że za pomocą błon biologicznych da się ujarzmić aktywność elektryczną komórek ludzkiego ciała i przekształcić ją w energię mechaniczną.
Mather pracuje nad formowaniem z fosfolipidów pęcherzyków (liposomów). Chodzi o wykorzystanie ich właściwości akustycznych, a więc o pozyskanie przetworników elektroakustycznych. W przyszłości jej zespół skoncentruje się na zwiększaniu mocy sygnału akustycznego poprzez modyfikacje składu, kształtu i rozmiarów liposomu.
Brytyjczykom nie chodzi tylko o skanowanie, bo jeśli połączy się liposomy ze specyficznymi cząsteczkami wykazującymi powinowactwo do pewnych typów komórek, będzie można je lokalizować i śledzić ich ruchy po organizmie. Końcowym etapem prac mają być testy na fantomach tkankowych. Pod warunkiem, że wszystko pójdzie po myśli naukowców, prototyp systemu powinien powstać do 2016 r.
Komentarze (0)