Przydatne grafenowe zakłócenia

| Technologia
NIST

Grafen - strukturalną odmianę węgla tworzącą warstwy o grubości zaledwie jednego atomu, odkryto zaledwie sześć lat temu. Od tego czasu zrewolucjonizował on wiele kierunków nauki i techniki i wydaje się być najbardziej obiecującym i uniwersalnym materiałem przyszłości. To z niego tworzą się słynne fulereny, czy węglowe nanorurki. Jak się okazuje, do badań nad jego właściwościami można będzie wykorzystać efekt mory.

Prążki mory (moiré) to efekt powstający w wyniku nałożenia na siebie dwóch regularnych wzorów, które są względem siebie przesunięte lub obrócone o niewielki kąt. W naturze możemy go obejrzeć na przykład nakładając na siebie dwa sitka, albo dwie firanki i poruszając nimi - powstaje wtedy trzeci, regularny wzór. Widać ją też na ekranie telewizora, gdy ktoś ma na sobie ubranie w drobną kratkę, albo jodełkę. Mora często jest utrapieniem dla grafików, pojawiając się przy skanowaniu, drukowaniu materiałów, fotografii cyfrowej, czy komputerowej obróbce grafiki.

Efekt mory, który jest w zasadzie po prostu zakłóceniem - interferencją, można jednak wykorzystać, przykładowo znając wzór jednej warstwy i analizując wzór tworzony przez morę można wydedukować wzór drugiej warstwy. Tę sztuczkę postanowili wykorzystać w praktyce naukowcy z amerykańskiego Instytutu Technologii stanu Georgia i Narodowego Instytutu Standardów i Technologii.

Grafen, który jest płaską, bo o grubości jednego atomu, warstwą węgla, doskonale się do tego nadaje, ponieważ tworzy regularny, sześciokątny wzór. Jeśli nałożymy go na drugą warstwę grafenu, albo innego materiału o regularnej budowie, to każde odkształcenie powierzchni, przesunięcie, przekręcenie czy wygięcie - poskutkuje powstaniem w tym miejscu interferencyjnych prążków mory.

Badacze stworzyli w tym celu warstwy grafenu na powierzchni węglika krzemu (inaczej zwanego karborundem). Uzyskano ją przez jednostronne podgrzewanie karborundu: usunęło to krzem i pozostawiło same atomy węgla. Przy wykorzystaniu tunelowego mikroskopu skaningowego można było obserwować nałożone na siebie warstwy grafenu i rejestrować prążki mory powstające przy najmniejszych zmianach zachodzących w obserwowanej strukturze (zobacz ilustrację). Nazwano ten sposób „atomową interferometrią mory". Wykorzystana w badaniu technika pomiarowa jest tak dokładna, że pozwala wykryć odkształcenia rzędu 0,1% w odległościach pomiędzy atomami węgla.

Projekt był częścią badań mających na celu dokładne poznanie właściwości grafenu, który w przeciwieństwie do innych materiałów nie rozciąga się, lecz raczej marszczy podczas zmian temperatury. Opracowana „atomowa interferometria mory" pozwoli np. na dokładne analizowanie i śledzenie przebiegu ładunków elektrycznych, czy rozchodzenia się ciepła i stanowić będzie wyśmienite narzędzie podczas prac nad stworzeniem grafenowych układów elektronicznych. Przydatna może być również do wykrywania i badania mikroskopowych naprężeń w innych materiałach.

Autorami pracy na ten temat są D. Miller, K. Kubista, G. Rutter, M. Ruan, W. de Heer, P. First oraz J. Stroscio, pracownicy National Institute of Standards and Technology oraz Georgia Institute of Technology.

grafen mora moire interferometria atomowa Georgia Tech NIST