Kwantowe kropki to nie kropki
Najnowsze eksperymenty przeprowadzone przez Grupę Fotoniki Kwantowej w DTU Fotonik oraz Instytut Nielsa Bohra z Uniwersytetu Kopenhaskiego dowodzą, że kwantowe kropki... nie są kropkami. Odkrycie to ma kolosalne znacznie, gdyż otwiera drogę dla nowych zastosowań kropek.
Kwantowa kropka to specyficzne źródło światła, które emituje pojedyncze fotony. Składa się ona z tysięcy atomów. Dotychczas sądzono, że rzeczywiście jest to kopka, czyli punktowe źródło światła. Uczeni doszli jednak do wniosku, że kropka nie jest kropką.
Podczas przeprowadzonego eksperymentu naukowcy rejestrowali emisję fotonów z kwantowych kropek umieszczonych blisko metalicznego lustra. Punktowe źródło światła ma takie same właściwości niezależnie od swojego ułożenia - standardowego czy odwróconego do góry nogami. Uczeni zaobserwowali jednak, że po odwróceniu kropki symetria zostaje zaburzona, a zatem właściwości emisji są zależne od ułożenia. To wskazuje, że kropki nie są kropkami. Mogą zatem być bardziej użyteczne niż dotychczas sądzono.
Na powierzchniach metalicznych luster pojawiają się plazmony, a plazmonika to bardzo obiecująca dziedzina nauki, która może znaleźć zastosowanie w informatyce kwantowej czy pozyskiwaniu energii słonecznej. Fakt, że właściwości światła emitowanego z kwantowych kropek mogą być znacząco zmieniane oznacza, że światło takie może z jeszcze większym prawdopodobieństwem niż przypuszczano prowadzić do wzbudzania plazmonów. Kwantowe kropki mogą zatem współpracować z nimi bardziej efektywnie, a zatem mogą być wydajnym źródłem światła w urządzeniach nanofotoniczych.
Najnowsze odkrycie znajdzie też zastosowanie w innych niż plazmonika dziedzinach wiedzy, takich jak elektrodynamika kwantowa czy badania nad fotonicznymi kryształami.
Komentarze (1)
pio, 22 grudnia 2010, 20:52
trzeba miec tutaj na uwadze pewne aspekty kropek kwantowych* (qd - quantum dot). pierwsza sprawa to fakt, ze wiekszosc qd to nie sa obiekty kuliste, tak jak wiekszosc ludzi to sobie wyobraza. dosc czestym przypadkiem jest wytwarzanie takich qd przy wykorzystaniu naprezen (niedopasowanie dwoch materialow). taki obiekt ma ksztalt 'soczewkowaty' (vide http://cdn.physorg.com/newman/gfx/news/quantumdotsa.jpg lub czytelniej tutaj http://www.mdpi.org/cji/cji/2005/072019re.htm ). chociazby z tego widac, ze taki sa one asymetryczne. takie 'soczewki' maja wysokosc sporo mniejsza niz srednice. druga sprawa, o ktorej czesto sie nie wspomina, to tzw. warstwa zwilzajaca, widoczna na plaszczyzna rozposcierajaca sie 'pod' qd ( http://cqd.eecs.northwestern.edu/research/qdots/fig0002.jpg ). warstwa zwilzajaca potrafi miec swoje zalety, bo np. laczy elektrycznie zbior qd.
panowie z DTU nie wspominaja o obiektach kulistych lub jakkolwiek centrosymetrycznych, ktore najlatwiej wytwarzac metodami chemicznymi. jednakze w tym przypadku sa to obiekty 'luzne', tj. nie umieszczone na podlozu. co prawda zdarzaja sie przypadki, gdy mozna wytwarzac qd z grubsza kuliste, np. poprzez implantacje, przy wykorzystaniu we wzroscie charakterystycznych grup materialow lub jako wytracenia jednego materialu w drugim.
tak przy okazji, to sa rowniez zupelnie inne metody wytwarzania qd. na przyklad cienka 'wstawka' w drucie kwantowym przypominajaca tabletke takze jest qd ( http://nano.ku.dk/Nyhedsliste/krogstrup_301009/krogstrup301009.jpg/ ). nie wspominajac juz o wykorzystaniu uwiezienia kwantowego w strukturach planarnych ( http://pages.unibas.ch/phys-meso/Pictures/Pictures_Images/cavity.gif ).
ps. qd moga powstawac z mniejszej ilosci niz tysiace
_____
* uwaga: bez slowa kwatowe ma to sens nijaki nie kazdy maly obiekt jest kropka kwantowa. rzecz w tym, ze musi byc uwiezienie kwantowe nosnikow (elektornow, dziur). w przypadku niektorych materialow nawet bardzo male rozmiary nie powoduja takich efektow.