Wbrew teorii ewolucji, mutacje DNA nie są całkowicie przypadkowe
Powszechnie spotykany rzodkiewnik pospolity (Arabidopsis thaliana) może znacząco zmienić nasze rozumienie mechanizmów ewolucyjnych, pomóc w opracowaniu lepszych roślin uprawnych czy w walce z rakiem. To modelowa roślina wykorzystywana do badań w botanice (m.in. w genetyce). A najnowsze badania nad nią przyniosły zaskakujące informacje.
Zawsze sądziliśmy, że mutacje DNA przytrafiają się losowo na całej jego długości. Okazuje się, że mutacje nie są aż tak bardzo przypadkowe i nie jest przypadkiem, gdy pomagają roślinom. To prowadzi co całkowitej zmiany myślenia o mutacjach, mówi profesor Grey Monroe z Uniwersytetu Kalifornijskiego w Davis.
Uczony wraz z kolegami pracowali przez trzy lata nad skewencjonowaniem DNA setek rzodkiewników pospolitych. Genom tej rośliny jest stosunkowo nieduży, zawiera 120 milionów par bazowych. Genom człowieka ma 3 miliardy par. I to właśnie z powodu tej prostoty rzodkiewnik jest rośliną modelową.
Prace zaczęły się w Instytucie im. Maxa Plancka, gdzie w warunkach laboratoryjnych hodowano rzodkiewniki. Roślinom zapewniono bardzo dobre warunki. Tak dobre, że egzemplarze, które w naturze by nie przetrwały z powodu różnego rodzaju defektów, mogły nadal rosnąć.
Gdy następnie zskewencjonowano genom setek rzodkiewników, znaleziono w nich ponad milion mutacji. I – wbrew temu czego się spodziewano – okazało się, że mutacje istnieje nielosowy wzorzec mutacji.
Na pierwszy rzut oka to, co odkryliśmy, wydaje się przeczyć obowiązującym teoriom mówiącym, że mutacje są całkowicie losowe i jedynie dobór naturalny decyduje o tym, która mutacja się utrzyma, mówi jeden z głównych autorów badań, Detlef Weigel z Instytutu im. Maxa Plancka. Okazało się bowiem, że istnieją całe fragmenty DNA, w których do mutacji dochodzi rzadko. We fragmentach tych odkryto nadreprezentację najbardziej istotnych genów, odpowiedzialnych np. za wzrost komórek czy ekspresję genów. To bardzo ważne fragmenty genomu. Obszary, które są najważniejsze są chronione przed mutacjami, mówi Monroe. Jako, że są to regiony wrażliwe, mechanizmy naprawy DNA muszą być tam szczególnie efektywne, dodaje Weigel.
Badacze zauważyli, że sposób, w jaki DNA jest zawinięte wokół różnych rodzajów białek wydaje się dobrym wskaźnikiem tego, czy dany fragment będzie ulegał mutacjom. "To oznacza, że jesteśmy w stanie przewidzieć, które geny są bardziej narażone na mutacje, a które mniej. A to daje nam całkiem dobre pojęcie o tym, co się dzieje", stwierdza niemiecki uczony.
Odkrycie nabiera szczególnego znaczenia na gruncie teorii ewolucji. Oznacza ono bowiem, że rzodkiewnik ewoluował tak, by chronić swoje geny przed mutacjami. To niezwykle ekscytujące odkrycie, gdyż możemy zacząć zastanawiać się, w jaki sposób chronić ludzkie DNA przed mutacjami, cieszy się Weigel.
Jeśli będziemy wiedzieli, dlaczego jedne obszary DNA są bardziej podatne na mutacje niż inne, możemy spróbować rozwijać rośliny o pożądanych cechach. A także opracować metody ochrony przed mutacjami prowadzącymi do nowotworów.
Nasza praca daje szerszy obraz sił stojących za naturalną bioróżnorodnością. Może ona zainspirować teoretyczne i praktyczne badania nad ewolucyjną rolą mutacji, czytamy w podsumowaniu badań.
Komentarze (8)
Sławko, 14 stycznia 2022, 13:57
Najważniejsze geny są pewnie i najstarszymi genami. Ewolucja miała więc najwięcej czasu na to by nauczyć się chronić/naprawiać te geny. Spostrzeżenie opisane w tym artykule jest ciekawe, ale jakoś nie jestem zaskoczony i nie widzę tu nic, co byłoby wbrew ewolucji.
Jajcenty, 14 stycznia 2022, 14:35
Przyznam że nie rozumiem istoty odkrycia. Trisomię uważamy za nielosową mutację bo się za często zdarza? Jakby pomieszano prawdopodobieństwo z jego rozkładem.
peceed, 15 stycznia 2022, 03:54
Teoria ewolucji w ogóle nie wymaga określonych rozkładów prawdopodobieństwa mutacji - działa z każdymi.
Samo odkrycie jest ciekawe, ale bez obejrzenia oryginalnej pracy nie wiem co dokładnie odkryto
Z opisu nie jestem nawet w stanie wykluczyć najbardziej oczywistego survivor bias.
W każdym razie mechanizmy powstawania mutacji są różne, a mechanizmy naprawcze wymagają fizycznego dostępu enzymów do struktury dna. Ponieważ taki dostęp jest najlepszy dla fragmentów podlegających ekspresji, nie ma niczego dziwnego że używane fragmenty DNA mogą być najczęściej naprawiane - to najprostszy emergentny mechanizm "nieizotropowych" mutacji wystarczający wstępnie do wytłumaczenia realnego zjawiska.
Potencjalne interakcje pomiędzy białkami histonowymi a genami są również ciekawe - przy działającym doborze płciowym geny "odporniejsze" na mutacje powinny wygrać z tymi częściej mutującymi, o ile są równie dobre pod kątem realizowanych funkcji biologicznych (bo częściej mutujące są częściej "upośledzone" przez mutacje ) - to jeśli decyduje "lokalne" powinowactwo.
Względnie jądro w naturalny sposób ma fragmenty o różnym tempie mutacji i dobór naturalny faworyzował umieszczanie ważniejszych genów w bardziej stabilnych rejonach - to przy hipotezie "rejonów".
Każdy z w.w. mechanizmów może być prawdziwy.
olamagato, 16 stycznia 2022, 01:30
Prawdopodobnie w czasach oceanicznej zupy świata RNA pojawiła się taka forma symbiozy białek z nićmi RNA (a potem DNA), żeby chronić kluczowe elementy nici, które są niezbędne, żeby symbioza wciąż występowała. Przecież w czasach gdy ocean był cytoplazmą nici RNA musiały się rozmnażać bez większych zmian/uszkodzeń, a więc mechanizm duplikujący musiał pozwolić na zrobienie kopii z wysokim podobieństwem do oryginału. Jednocześnie działający dobór naturalny powodował, że przeżywały te osobniki nici, których mniej ważne elementy z punktu widzenia symbionta zmieniały się w sposób pozytywny dla całości układu. Zapewne mechanizmy - które w późniejszych komórkach zostały zastąpione przez bardziej efektywnych symbiontów, które stały się organellami - musiały zaniknąć, więc możemy się ich tylko domyślać.
Dzisiaj mając możliwości sekwencjonowania RNA/DNA możemy się pokusić o powtórzenie eksperymentu tworzącego z pierwotnej zupy pierwsze elementy życia. Nie należy go tylko przerywać, lecz pozwolić w pełnej izolacji obserwować co się stanie w dłuższej perspektywie. Przy dobrze dobranych warunkach prawdopodobnie będzie możliwe zaobserwowanie pierwszych składowych życia, czyli jakichkolwiek replikacji zasad RNA/DNA lub elementów białek. Ono nie musi być identyczne jakie znamy. Może być nawet niezwykle inne. Wystarczy jednak zaobserwować sam mechanizm pierwszego życia. Być może dzięki zjawisku mikrograwitacji w środowisku nieważkim lub po prostu efektów cząsteczkowych i reakcji, które będą się stawały coraz bardziej powtarzalne przy stałym dopływie energii cieplnej, chemicznej lub słonecznej.
Ninjahouse (ninjahouse at interia dot eu)
olamagato, 17 stycznia 2022, 18:54
A co do rzodkiewnika, to chyba tu jest odwrócenie z poplątaniem. Które komórki dłużej żyją i zachowują stan genetyczny? Ludzkie czy rzodkiewnika? Wydaje mi się, że ludzkie bo możemy żyć ponad 100 lat, a taki rzodkiewnik chyba nawet nie zbliża się do tej ilości czasu. Prawdpodobnie więc podobne mechanizmy są już w ludzkiej komórce obecne i działają lub są nawet lepsze. Tylko być może jeszcze ich nie odkryliśmy.
lanceortega, 18 stycznia 2022, 03:42
Nieporozumienie. Mutacje są losowe bo losowe jest ich pojawienie się, natomiast niektóre fragmenty genomu są bardziej podatne na ich wystąpienie i brak naprawy. Przypomina to znów słynny problem survivorship bias. Utrwalone i wykrywane podczas badań mutacje np. w housekeeping genes muszą być rzadkie, bo każda zmiana jest potencjalnie letalna - jeśli więc wystąpiły mutacje to ich ofiar już nie ma i ich się nie bada☠️
KONTO USUNIĘTE, 18 stycznia 2022, 07:35
Wiadomo... czytacz KW jest mądrzejszy od zawodowego badacza i na podstawie popularnego omówienia zakłada u nich deficyt dedukcji. Jeżeli macie w sobie żyłkę odkrywcy, a nie amatorskiego krytykanta, to najpierw do żródła, w którym tę oczywistą ewentualność z marszu wyeliminowano:
To determine whether low levels of polymorphism in gene bodies were indeed caused by reduced mutation rather than purifying selection, we analysed (...) i tu sobie poczytajcie, jak.
olamagato, 19 stycznia 2022, 19:03
Sprawa jest fundamentalna bo nie wiadomo do dzisiaj czy i co było pierwsze. Wiemy, że nici RNA/DNA mogą produkować białko z otaczającego je środowiska, ale aminokwasy białkowe mogły też powstać samoistnie. Być może produkcja białek przez nici nukleinowe była rodzajem przetwarzania energii, zabezpieczania swojego otoczenia właśnie przed mutacjami lub zniszczeniem/uszkodzeniem przez inne nici? Jest też interesujące jakie są przyczyny mutacji. Fizyczne takie jak promieniowanie, chemiczne takie jak interakcja związków chemicznych w otoczeniu? Być może umiejscowienie w przestrzeni poszczególnych elementów nici między cząsteczkami białka lepiej zabezpiecza przed mutacjami. Być może z tego samego powodu powstały błony i ściany komórkowe pierwszych jednokomórkowców?