Mutacje genetyczne - powstawanie i diagnostyka
Diagnostyka genetyczna ma na celu poszukiwanie wariantów genetycznych będących przyczyną zaburzeń fenotypowych pacjenta. Każdy pojedynczy genom ludzki zawiera tysiące zmian genetycznych. Tylko nieliczne z nich prowadzą do zmian fenotypowych. Dlatego tak ważna jest ocena prognostyczna ich konsekwencji biologicznych oraz klinicznych. Błędna interpretacja znaczenia wykrytego wariantu może spowodować poważne konsekwencje dla pacjenta oraz jego rodziny. Liczba i różnorodność diagnozowanych wariantów sprawia, że ocena ich konsekwencji funkcjonalnych wymaga wsparcia przez wieloelementową analizę obliczeniową. Obecnie dostępnych jest wiele narzędzi predykcji in silico. Wykorzystują one różnorodne modele obliczeniowe oraz źródła danych genetycznych.
Genom człowieka jest to całkowita informacja genetyczna zawarta w zestawie 23 par chromosomów obecnych w jądrze komórkowym (genom jądrowy) oraz w mitochondriach (genom mitochondrialny) [1]. Haploidalny ludzki genom jądrowy ma długość około 3 miliardów par zasad i koduje około 30 000 genów [2]. Genom zbudowany jest z kwasu dezoksyrybonukleinowego (DNA). Składa się z części kodujących białka tzw. eksonów obejmujących
Dla przetrwania oraz prawidłowego rozrodu wymagana jest stabilność genetyczna. Jest ona zapewniana przez proces replikacji oraz mechanizmy naprawy wychwytujące i korygujące błędy wynikające z pomyłek aparatu replikacyjnego oraz z przypadkowych uszkodzeń DNA. Czasem jednak mechanizmy naprawy okazują się zawodne i wtedy zamiast zmiany przejściowej dochodzi do utrwalenia błędu. Takie trwałe zmiany, które mogą lecz nie muszą, prowadzić do poważnych konsekwencji, nazywamy mutacjami. Efekty wpływu mutacji na komórkę, organizm zależą od wielu czynników m.in. rodzaju wariantu, miejsca powstania [4]. Mutacje zgodnie z definicją, są to wszelkie trwałe zmiany w sekwencji nukleotydowej o częstości populacyjnej poniżej 1%. Termin polimorfizm jest zdefiniowany jako wariant występujący w populacji z częstością 1% lub większą. Warianty genetyczne można sklasyfikować na podstawie wielu różnych parametrów m.in.: ze względu na zakres jaki obejmują, mechanizm powstawania, miejsca powstania lub konsekwencje jakie wywołują [5].
Wśród mutacji genowych dodatkowo wyróżnić można mutacje punktowe, które dotyczą zmian pojedynczych nukleotydów.
Dynamiczny rozwój diagnostyki molekularnej wymusił konieczność wprowadzenia ujednoliconego oraz jednoznacznego zapisu wariantów sekwencji nukleotydowej. Na podstawie zestawu standardowych kryteriów powstała międzynarodowa, referencyjna nomenklatura wariantów genetycznych. Za utrzymywanie i wersjonowanie nomenklatury odpowiedzialna jest organizacja Human Genome Variation Society (HGVS). Opracowane wytyczne umożliwiają efektywne współdzielenie oraz użytkowanie informacji genomowych. Wszystkie laboratoria genetyczne zobligowane są do zapisu wyniku badania genetycznego zgodnie z wytycznymi HGVS [5,6]. Przyjęte rekomendacje dostępne są do publicznej wiadomości na stronie internetowej www.varnomen.hgvs.org [7].
Celem diagnostyki genetycznej jest wsparcie oceny klinicznej oraz podejmowanych decyzji medycznych. Błędna interpretacja znaczenia wykrytego wariantu może spowodować poważne konsekwencje dla pacjenta oraz błędną stratyfikację ryzyka dla członków jego rodziny. W 2013 r. organizacja American College of Medical Genetics and Genomics (ACMG) zwołała specjalną grupę roboczą złożoną z przedstawicieli ACMG, American Association for Molecular Pathology (AMP) oraz College of American Pathologists (CAP). Grupa ta składała się z klinicystów oraz dyrektorów laboratoriów klinicznych. Celem było opracowanie międzynarodowych wytycznych dotyczących klasyfikacji znaczenia wariantów genetycznych wykrywanych w analizach sekwencjonowania genomu ludzkiego. W 2015 roku został opublikowany specjalny raport przedstawiający szczegółowe rekomendacje dotyczące testów genetycznych wykonywanych w laboratoriach klinicznych. Warianty identyfikowane w chorobach monogenowych, dziedziczonych zgodnie z prawami Mendla zaklasyfikowano do pięciu kategorii:
● wariant patogenny (ang. pathogenic),
● wariant potencjalnie patogenny (ang. likely pathogenic),
● wariant o niepewnym znaczeniu (ang. uncertain significance),
● wariant potencjalnie łagodny (ang. likely benign),
● wariant łagodny (ang. benign) [6].
“In silico” jest to termin naukowy określający sposób wykonania czynności, badania, testu. Oznacza, że analiza została przeprowadzona za pomocą komputera i urządzeń informatycznych. Nazwa powstała analogicznie do terminów in vitro i in vivo [10]. Diagnostyka genetyczna ma na celu poszukiwanie wariantów genetycznych będących przyczyną zaburzeń fenotypowych pacjenta. Wykorzystuje analizę asocjacji polegającą na łączeniu określonego wariantu z wystąpieniem danej cechy [11]. Analiza bioinformatyczna wyniku pacjenta składa się z wielu etapów. Obejmuje m.in. następujące analizy in silico:
● porównywanie sekwencji badanej z sekwencją referencyjną - sekwencje referencyjne dostępne są w wielu przeglądarkach genomowych, do najczęściej stosowanych należą m.in. GenBank, LRG oraz Ensembl,
● przeszukiwanie baz danych populacyjnych, gromadzących informacje o częstościach wariantów np.1000 Genomes,, Exome Aggregation Consortium (ExAC), Exome Variant Server,
● przeszukiwanie biomedycznych baz danych, gromadzących informacje o klinicznym znaczeniu wariantów, powiązaniu fenotypowym, zaburzeniach genetycznych m.in. ClinVar, OMIM, Human Gene Mutation Database (HGMD)
● przeszukiwaniu biomedycznych publikacji naukowych,
● interpretację wpływu wykrytego wariantów na genom oraz kodowane białko z zastosowaniem programów predykcyjnych [6,7,8].
W chwili obecnej dostępnych jest wiele narzędzi predykcji in silico, a analiza patogenności wariantów genetycznych jest kluczowa w skutecznej diagnostyce genetycznej i następującej po niej terapii.
Piśmiennictwo
[1] Brown, T. A.: The Human Genome. Oxford: Wiley-Liss 2002
[2] National Human Genome Research Institute (NHGRI). Human Genome Project Completion: Frequently Asked Questions. https://www.genome.gov
[3] Friedman J.M., Dill F.J. , Hayden M.R., McGillivaray B.C.: Genetyka. Wydawnictwo medyczne Urban & Partner, Wydanie I polskie pod redakcją Limona J., Wrocław 1996
[4] Alberts B., Bray D., Johnson A., Lewis J., Raff M., Roberts K., Walter P.: Podstawy biologii komórki. Wprowadzenie do biologii molekularnej. Wydawnictwo Naukowe PWN, przekład pod redakcją Michejdy J. i Augustyniaka J., Warszawa 1999
[5] Claustres M., Kozich V., Dequeker E., Fowler B., Hehir-Kwa J.Y., Miller K., Oosterwijk C., Peterlin B., van Ravenswaaij-Arts C., Zimmermann U., Zuffardi O., Hastings R.J. and David E., Barton D.E., on behalf of the ESHG Quality committee: Recommendations for reporting results of diagnostic genetic testing (biochemical, cytogenetic and molecular genetic). European Journal of Human Genetics 2014; 22
[6] Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., Voelkerding K., Rehm H.L., on behalf of the ACMG Laboratory Quality Assurance Committee: Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine 2015; 17
[7] https://varnomen.hgvs.org
[8] den Dunnen J.T., Dalgleish R. , Maglott D.R., Hart R.K., Greenblatt M.S., McGowan-Jordan J., Roux A.F., Smith T., Antonarakis S.E., Taschner P.E.: HGVS Recommendations for the Description of Sequence Variants. Hum Mutat. 2016; 37(6)
[9] Kim Y.E., Ki C.S., Jang M.A.: Challenges and Considerations in Sequence Variant Interpretation for Mendelian Disorders. Ann Lab Med 2019; 39(5)
[10] Colquitt R.B., Colquhoun D.A., Thiele R.H.: In silico modelling of physiologic systems. Best Practice & Research Clinical Anaesthesiology 2011; 25
[11] Słomski R.: Analiza DNA - Teoria i Praktyka. Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu, Poznań 2008
Komentarze (0)