Mniejsze od małego

| Ciekawostki
bogenfreund, CC

Powoli świat ukryty we wnętrzu struktur komórkowych, np. jądra, staje dla techniki i naszych oczu otworem. Dzięki złotym nanoklastrom, których średnica nie przekracza 1 nanometra, będzie można obserwować proces prawidłowej replikacji DNA i wszelkie zmiany w genomie (Journal of the American Chemical Society).

Do tej pory w ramach bioobrazowania naukowcy posługiwali się półprzewodnikowymi kropkami kwantowymi, których rozmiary wynoszą zazwyczaj co najmniej 3 nanometry. Wysoce fluorescencyjne złote klastry mają nad nimi jeszcze jedną przewagę – nie zawierają toksycznych metali, takich jak kadm lub ołów. Ich twórcami są chemicy z singapurskiego Instytutu Bioinżynierii i Nanotechnologii.

Dzięki ulepszonym klastrom da się stwierdzić, co w jądrze komórkowym piszczy. To doskonały sposób znakowania oraz oceniania skuteczności leków czy terapii genowych.

Złote nanoklastry mają obiecujące parametry, jeśli chodzi o zastosowania in vivo. Nasze materiały są mniejsze, mniej toksyczne i bardziej biokompatybilne od stosowanych dotąd nieorganicznych fluorescencyjnych kropek kwantowych. Czerwona fluorescencja nanoklastrów poprawia jakość obrazowania biomedycznego. Dzieje się tak głównie dzięki zredukowaniu fluorescencji tła i lepszej penetracji tkanek – opowiada dr Yuangang Zheng.

Wbrew pozorom, synteza nanoklastrów nie jest trudna, wystarczyło "tylko" wpaść na właściwy pomysł. Powstają one podczas jednoetapowej reakcji w temperaturze ludzkiego ciała (37°C). Do stabilizowania i tworzenia rusztowania dla jonów złota w roztworze wodnym wykorzystano surowiczą albuminę wołową (ang. bovine serum albumin, BSA). Reagenty są tanie, a cały proces można uprzemysłowić.

Nanoklastry są stabilne zarówno w roztworze wodnym, jak i w postaci ciała stałego, co ułatwia ich przechowywanie i rozprowadzanie. Singapurczycy twierdzą, że zainspirowała ich sama natura, a konkretnie biomineralizacja muszli i kości.

nanoklastry złote fluorescencyjne obrazowanie Yuangang Zheng