Antyferromagnetyk przenosi i wzmacnia prądy spinowe. Szansa na szybki energooszczędny transfer danych

| Technologia
Harvard Gazette

Główny autor badań, Maciej Dąbrowski z University of Exeter mówi, że uzyskane przez nas eksperymentalne potwierdzenie istnienie mechanizmu przemijających fal spinowych pokazuje, że transfer momentu pędu pomiędzy spinami a strukturą krystaliczną antyferromagnetyka można uzyskać w cienkowarstwowym NiO. To otwiera drogę do zbudowania nanoskalowych wzmacniaczy prądu spinowego.

Doktor Dąbrowski jest głównym autorem opublikowanego na łamach Physical Review Letters artykułu, którego autorzy informują o dokonaniu przełomu w dziedzinie spintroniki. Przełomu, który może doprowadzić do powstania energooszczędnych, niezwykle wydajnych urządzeń elektronicznych.

Obecnie technologie informacyjne opierają się na elektronice. Do przechowywania i przenoszenia danych wykorzystujemy ładunek elektronu. Intensywnie jednak rozwija się spintronika, która do tych samych zadań wykorzystuje nie ładunek, a spin elektronu. Przed trzema laty informowaliśmy, że naukowcy z Instytutu Fizyki PAN badają możliwość przenoszenia informacji przez fale spinowe. Wyobraźmy sobie materiał magnetyczny, w którym wszystkie spiny są jednakowo ukierunkowane. Jeśli odchylę jeden spin, to będzie próbował on wrócić do swojego punktu równowagi. Jednak jego ruch wychwyci już spin sąsiedniego elektronu i on również się wychyli. Przez wzajemne oddziaływanie między spinami to wychylenie – czyli zaburzone lokalnie namagnesowanie – będzie się rozchodziło w materiale, przyjmując formę fali. To właśnie nazywamy falą spinową, tłumaczyła wówczas doktor Ewa Milińska.

Teraz naukowcy z Uniwersytetów w Exeter, Oksfordzie, Berkeley oraz uczeni z Advanced Light Source i Diamond Light Source dowiedli eksperymentalnie, że zmienne prądy spinowe o wysokiej częstotliwości mogą być przesyłane i wzmacniane w cienkiej warstwie tlenku niklu (NiO). Eksperymenty wykazały, że prąd spinowy w cienkowarstwowym NiO jest propagowany przez krótkotrwałe fale spinowe. Mamy tutaj do czynienia ze zjawiskiem podobnym do tunelowania kwantowego.

Zjawisko to zachodzi w temperaturze pokojowej i odbywa się przy częstotliwościach liczonych w gigahercach, dzięki czemu w przyszłości można je będzie wykorzystać do energooszczędnego i szybkiego przekazywania danych.

Tymczasem naukowcy już myślą o udoskonalaniu spintroniki. W Instytucie Fizyki Jądrowej PAN trwają prace nad raczkującą dopiero magnoniką.

prąd spinowy fala spinowa antyferromagnetyk spintronika elektronika transfer danych