Rewolucyjny spaser
Dzięki pracom uczonych z Purdue University do słownika techniki wejdzie słowo "spaser". Termin ten powstał w 2003 roku na opisanie zjawiska "wzmacniania plazmonów powierzchniowych poprzez wymuszoną emisję promieniowania" (Surface Plasmon Amplification by Stimulated Emission of Radiation).
Spaser możemy uznać za rodzaj lasera, jednak jest urządzeniem tak małym, że równie niewielkiego lasera nie jesteśmy w stanie wybudować. Emituje on światło widzialne, a dzięki niewielkim rozmiarom możliwe będzie zintegrowanie go w układzie scalonym, co pozwoli na zbudowanie superszybkich komputerów wykorzystujących światło do przeprowadzania obliczeń, zaawansowanych czujników czy urządzeń do obrazowania.
Spaser działa dzięki plazmonom powierzchniowym, czyli elektromagnetycznym falom powierzchniowym o polaryzacji typu p. Fale te rozprzestrzeniają się wzdłuż powierzchni styku dwóch materiałów, których stałe dielektryczne mają przeciwne znaki.
Naukowcom udało się zaprzęgnąć te fale do stworzenia spasera. Dzięki temu zbudowali "nanolaser oparty na spaserze", który składał się ze sfer o średnicy 44 nanometrów.
Spasery zawierały złoty rdzeń otoczony przez podobną do szkła powierzchnię, która była wypełniona zielonym barwnikiem. Po oświetleniu rdzenia, plazmony generowane przez złoto były wzmacniane przez barwnik, następnie konwertowano je na fotony i emitowano jak światło laserowe.
Właśnie użycie plazmonów pozwoliło na stworzenie tak niewielkiego urządzenia. Tradycyjnych laserów nie można w nieskończoność pomniejszać, gdyż optyczny rezonator, konieczny do wzmocnienia fotonów, musi być wielkości co najmniej połowy długości fali emitowanego światła. Użycie plazmonów w miejsce fotonów pozwoliło na zastosowanie rezonatora wielkości 44 nanometrów, a więc kilkunastokrotnie mniejszego od 530-nanometrowej fali emitowanej przez spaser.
W przyszłości naukowcy chcą generować plazmony za pomocą prądu elektrycznego, a nie światła, dzięki czemu umieszczenie spasera w układzie scalonym i jego wykorzystanie np. w komputerach będzie znacznie łatwiejsze.
Prace te to ważny krok naprzód, który, dzięki zastosowaniu skali znacznie mniejszej niż długość fali światła widzialnego, może być początkiem rewolucji w nanofotonice - stwierdził Timothy D. Sands, dyrektor Birck Nanotechnology Center na Purdue Univeristy.
Komentarze (0)