Po raz pierwszy udało się bezpośrednio zmierzyć stałą struktury subtelnej

| Astronomia/fizyka
Tatiana Lysenko / TU Wien

Stała struktury subtelnej (α) to być może najważniejsza ze stałych we wszechświecie. Opisuje siłę oddziaływań elektromagnetycznych i jest kombinacją trzech podstawowych stałych przyrody – ładunku elektronu, stałej Plancka i prędkości światła. Istnieje wiele metod pomiaru tej stałej. Zwykle pomiary takie są dokonywane pośrednio, poprzez pomiar innych właściwości fizycznych i obliczenie na tej podstawie wartości α. Na Uniwersytecie Technicznym w Wiedniu (TU Wien) przeprowadzono eksperyment, w trakcie którego udało się po raz pierwszy bezpośrednio zmierzyć wartość stałej struktury subtelnej.

Stała struktury subtelnej opisuje siłę oddziaływań elektromagnetycznych. Wskazuje, z jaką siłą naładowane cząstki, takie jak elektrony, reagują z polem magnetycznym. Jej wartość wynosi 1/137, gdyby była nieco inna – powiedzmy 1/136 – świat, jaki znamy, nie mógłby istnieć Atomy miałyby inne rozmiary, wszystkie procesy chemiczne przebiegałyby inaczej, inaczej też przebiegałyby reakcje termojądrowe w gwiazdach. Co interesujące, naukowcy spierają się o to, czy stała struktury subtelnej jest rzeczywiście stałą, czy też w ciągu miliardów lat jej wartość uległa niewielkim zmianom.

Większość ważnych stałych fizycznych to wartości wymiarowe, wyrażane w konkretnych jednostkach, na przykład prędkość światła wyrażamy w metrach na sekundę. Stała struktury subtelnej jest inna. Nie ma tutaj jednostek, to po prostu liczba. Jest to stała bezwymiarowa, wyjaśnia profesor Andrei Pimenow z Instytutu Fizyki Ciała Stałego na TU Wien.

Pimenov oraz jego koledzy z TU Wien i naukowcy z Uniwersytetu Kalifornijskiego w Los Angeles przeprowadzili pierwszy eksperyment, podczas którego możliwe było dokonanie bezpośrednich pomiarów wartości stałej struktury subtelnej.

Światło lasera jest spolaryzowane liniowo, oscyluje wertykalnie. Gdy podczas eksperymentu trafia na dysk z materiału o grubości liczonej w nanometrach, jego polaryzacja ulega zmianie. Samo w sobie nie jest to niczym niezwykłym. Wiele materiałów powoduje zmianę polaryzacji światła laserowego. Dzięki interakcji fotonów z polem elektromagnetycznym można polaryzację można obracać. Przy silnych polach magnetycznych i w niskich temperaturach pojawia się kwantowy efekt Halla, a zmiany polaryzacji są proporcjonalne do stałej struktury subtelnej. Jednak konieczność używania silnego pola magnetycznego powoduje, że trzeba uwzględnić je w równaniach opisujących α, co utrudnia przygotowanie eksperymentu.

Podczas ostatniego eksperymentu naukowcy wykorzystali światło terahercowego lasera, które nakierowali na cienki dysk izolatora topologicznego o wzorze chemicznym (Cr0.12Bi0.26Sb0.62)2Te3. Materiał zawiera chrom, ma więc wbudowane pole magnetyczne. Gdy naukowcy przyjrzeli się zmianie polaryzacji światła po przejściu przez dysk okazało się, że doszło do skokowej, a nie płynnej, zmiany kąta polaryzacji i wynosiła ona tyle, ile wartość α. Stała struktury subtelnej jest tutaj natychmiast widoczna jako kąt, cieszy się Pimenov.

I mimo że pomiary te nie dały tak dokładnego wyniku, jak pomiary pośrednie, to – jak podkreśla Pimenov – główną korzyścią jest tutaj możliwość otrzymania podstawowej stałej fizycznej z bezpośredniego eksperymentu, a nie poleganie na innych pomiarach i precyzji kalibracji sprzętu.

stała struktury subtelnej kwantowy efekt Halla polaryzacja