Zademonstrowali, że jądra atomowe mogą być wzbudzane poprzez wychwyt elektronu na niezapełnioną powłokę elektronową atomu
Po raz pierwszy pokazano eksperymentalnie, że jądra atomowe mogą być wzbudzane poprzez wychwyt elektronu na niezapełnioną powłokę elektronową atomu. Wynik może mieć znaczenie zarówno teoretyczne, jak i praktyczne, wskazując nowy sposób magazynowania energii. O odkryciu donosi najnowszy numer czasopisma Nature. Współautorami pracy są polscy naukowcy.
W najnowszym wydaniu czasopisma Nature (luty 2018), ukazał się artykuł pt. Isomer depletion as experimental evidence of nuclear excitation by electron capture, którego autorzy donoszą o pierwszym eksperymentalnym zaobserwowaniu nowego, przewidywanego wcześniej teoretycznie, zjawiska fizycznego, tj. procesu wzbudzenia jądra poprzez wychwyt elektronu do powłoki elektronowej atomu (ang. Nuclear Excitation by Electron Capture, NEEC). Zjawisko to zostało po raz pierwszy zarejestrowane dla izotopu molibdenu 93Mo. Jądrowy stan izomeryczny molibdenu 93mMo gromadzi ogromną energię w stosunku do stanu podstawowego, a czas jego połowicznego zaniku wynosi 6,85 godziny. W wyniku zajścia procesu NEEC izomerycznemu jądru 93mMo zostaje dostarczona niewielka energia, rzędu 4,85 keV, co powoduje jego przejście do innego stanu wzbudzonego, tym razem krótkożyciowego, z czasem połowicznego zaniku rzędu nanosekund. Niemal natychmiast ulega on deekscytacji do stanu podstawowego. W ten sposób dochodzi do uwolnienia zgromadzonej pierwotnie w izomerze jądrowym 93mMo energii rzędu 2,5 MeV (jest to energia 500 razy większa od tej, która została dostarczona).
Eksperyment został przeprowadzony w Stanach Zjednoczonych na liniowym akceleratorze ATLAS w Laboratorium Narodowym w Argonne. Wykorzystano tam rozpędzone wysokoładunkowe jony (pozbawione od 32 do 36 elektronów) izomeru 93mMo, które podczas przechodzenia przez tarczę z węgla chwytały elektrony do niezapełnionych powłok atomowych. Naukowcy spodziewali się, że przy odpowiednio dobranych warunkach ten wychwyt elektronów spowoduje także pożądane wzbudzenia jąder 93mMo. Deekscytację stanu wzbudzonego zachodzącą poprzez emisję kwantów gamma o charakterystycznych energiach można już zaobserwować eksperymentalnie. Teoretyczny opis scenariusza zajścia procesu NEEC został przedstawiony w marcu 2017 roku w pracy zespołu polskich i amerykańskich naukowców. Dwóch z nich, prof. dr hab. Marek Polasik z Wydziału Chemii Uniwersytetu Mikołaja Kopernika w Toruniu oraz dr Jacek Rzadkiewicz z Narodowego Centrum Badań Jądrowych w Świerku, uczestniczyło także w zaprojektowaniu i przeprowadzeniu eksperymentu oraz interpretacji jego wyników.
Sukces eksperymentu zależał przede wszystkim od właściwego dobrania energii kinetycznej jonów izomeru 93mMo oraz ich stanu ładunkowego – wyjaśnia doktor Rzadkiewicz. Trzeba było zapewnić optymalne warunki pozwalające na dostarczenie izomerowi idealnie dopasowanej porcji energii.
Eksperymentalna identyfikacja procesu NEEC wymagała również koincydencyjnych pomiarów promieniowania gamma dla przejść pomiędzy odpowiednimi stanami jądrowymi izotopu 93Mo – dodaje profesor Polasik. Nasi amerykańscy koledzy wykorzystali do tego celu najpotężniejszy na świecie spektrometr Gammasphere, składający się z 92 detektorów germanowych ułożonych w kształcie 16 sferycznych pierścieni.
Autorami publikacji, oprócz wspomnianych Polaków, są naukowcy z USA, Australii, Włoch i Rosji. O wyjątkowej ważności eksperymentu świadczy fakt, że badacze z całego świata od ponad 40 lat rywalizowali o to, kto jako pierwszy zaobserwuje nowe zjawisko dla jakiegokolwiek izomeru jądrowego. Wynik ma znaczenie nie tylko jako potwierdzenie wiedzy teoretycznej.
Zaobserwowanie procesów NEEC może mieć duży wpływ na zrozumienie procesów zachodzących we wszechświecie – przekonuje profesor Polasik. W szczególności może nam dostarczyć wiedzy dotyczącej przetrwania stanów izomerycznych różnych pierwiastków w środowisku gwiazd.
Badania nad tego typu procesami mogą też być punktem wyjścia dla badań stosowanych – uzupełnia doktor Rzadkiewicz. Ich celem byłoby np. opracowanie metody kontrolowanego uwalniania energii zgromadzonej w izomerach jądrowych, co powinno przyczynić się do rozwoju nowych koncepcji niekonwencjonalnych i ultrawydajnych baterii jądrowych.
Komentarze (5)
lester, 13 lutego 2018, 21:41
Straszny bełkot.
Rowerowiec, 13 lutego 2018, 22:07
Raczej niezrozumienie.
ex nihilo, 14 lutego 2018, 00:51
E tam... wszystko się zgadza
Abo:
- jądro jest w stanie podstawowym (P), kiedy jego energia jest na poziomie minimum, ale...
- ... może naćpać się energii (nieważne jak) i wtedy przechodzi w któryś ze stanów wzbudzonych (Wn, izomery);
- te stany wzbudzone są bardziej lub mniej nietrwałe - jądra emitują kwanty gamma i wracają do stanu podstawowego;
- załóżmy, że mamy stan wzbudzony W1, który ma dużą energię "nadmiarową", ale jest w miarę trwały (półrozpad 6,5 h);
- jeśli dodamy mu jeszcze odrobinę energii przejdzie w stan W2, który jest bardzo nietrwały (półrozpad nanosekundy), a przy tym W2 nie wraca do W1, ale bezpośrednio do P - po prostu "zrzuca" całą nadmiarową energię;
- czyli przejście od W1 do W2, jest jak mucha, która siada na sztandze i powoduje, że zawodnik razem ze sztangą zrzuca nadmiar energii waląc dupskiem o glebę
No i to tyle
Reszta to szczegóły techniczne, takie jak np. to, że stan energetyczny jądra jest uzależniony m.in. od powłoki elektronowej, czyli zmieniając ją można wpływać na stan energetyczny jądra.
Jajcenty, 14 lutego 2018, 08:24
Właśnie. Zabrakło wyjaśnienia skąd się bierze energia wzbudzenia jądra, bo przecież nie z samego obsadzenia orbitalu.
ex nihilo, 15 lutego 2018, 02:55
P -> W1 pewnie z obtłukiwania w akceleratorze, ale dla sprawy to nieistotne
W1 -> W2 właśnie z obsadzenia orbitalu - to jest to oddziaływanie Nuclear Excitation by Electron Capture, NEEC
W maksymalnym uproszczeniu - pomiędzy jądrem a powłoką elektronową jest stałe oddziaływanie EM; przechwyt elektronu powoduje, że elektron "dzieli się" swoją energią (jej nadmiarem w stosunku do energii orbitalu) z jądrem. Więcej np. tu: http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/38/027/38027654.pdf