Szwedzi obalili ważną teorię dotyczącą DNA
Naukowcy ze szwedzkiego Uniwersytetu Technologicznego Chalmers obalili teorię mówiącą, że obie nici DNA są utrzymywane przez wiązania atomów wodoru. Okazuje się, że kluczem są siły hydrofobowe, nie atomy wodoru. Odkrycie to może mieć duże znaczenie dla medycyny i innych nauk biologicznych.
Helisa DNA składa się z dwóch nici zawierających molekuły cukru i grupy fosforanowe. Pomiędzy obiema nićmi znajdują się zasady azotowe zawierające atomy wodoru. Dotychczas sądzono, że to wiązania atomów wodoru utrzymują razem obie nici.
Jednak uczeni z Chalmers wykazali właśnie, że kluczem do utrzymania razem nici jest hydrofobowe wnętrze molekuł zanurzonych w środowisku składającym się głównie z wody. Zatem mamy tutaj hydrofilowe otoczenie i hydrofobowe molekuły odpychające otaczającą je wodę. Gdy hydrofobowe molekuły znajdują się w hydrofilowym środowisku, grupują się razem, by zmniejszyć swoją ekspozycję na wodę.
Z kolei wiązania wodorowe, które dotychczas postrzegano jako elementy utrzymujące w całości podwójną helisę DNA, wydają się mieć więcej wspólnego z sortowaniem par bazowych, zatem z łączniem się helisy w odpowiedniej kolejności.
Komórki chcą chronić swoje DNA i nie chcą wystawiać ich na środowisko hydrofobowe, które może zawierać szkodliwe molekuły. Jednocześnie jednak DNA musi się otwierać, by było użyteczne. Sądzimy, że przez większość czasu komórki utrzymują DNA w środowisku wodny, ale gdy chcą coś z DNA zrobić, na przykład je odczytać, skopiować czy naprawić, wystawiają DNA na środowisko hydrofobowe, mówi Bobo Feng, jeden z autorów badań.
Gdy na przykład dochodzi do reprodukcji, pary bazowe odłączają się i nić DNA się otwiera. Enzymy kopiują obie strony helisy, tworząc nową nić. Gdy dochodzi do naprawy uszkodzonego DNA, uszkodzone części są wystawiane na działanie hydrofobowego środowiska i zastępowane. Środowisko takie tworzone jest przez proteinę będącą katalizatorem zmiany. Zrozumienie tej proteiny może pomóc w opracowaniu wielu leków czy nawet w metodach leczenia nowotworów. U bakterii za naprawę DNA odpowiada proteina RecA. U ludzi z kolei proteina Rad51 naprawia zmutowane DNA, które może prowadzić do rozwoju nowotworu.
Aby zrozumieć nowotwory, musimy zrozumieć, jak naprawiane jest DNA. Aby z kolei to zrozumieć, musimy zrozumieć samo DNA. Dotychczas go nie rozumieliśmy, gdyż sądziliśmy, że helisa jest utrzymywana przez wiązania atomów wodoru. Teraz wykazaliśmy, że chodzi tutaj o siły hydrofobowe. Wykazaliśmy też, że w środowisku hydrofobowym DNA zachowuje się zupełnie inaczej. To pomoże nam zrozumieć DNA i proces jego naprawy. Nigdy wcześniej nikt nie umieszczał DNA w środowisku hydrofobowym i go tam nie badał, zatem nie jest zaskakujące, że nikt tego wcześniej nie zauważył, dodaje Bobo Feng.
Szwedzcy uczeni umieścili DNA w hydrofobowym (w znaczeniu bardzo zredukowanej koncentracji wody) roztworze poli(tlenku etylenu) i krok po kroku zmieniali hydrofilowe środowisko DNA w środowisko hydrofobowe. Chcieli w ten sposób sprawdzić, czy istnieje granica, poza którą DNA traci swoją strukturę. Okazało się, że helisa zaczęła się rozwijać na granicy środowiska hydrofilowego i hydrofobowego. Bliższa analiza wykazała, że gdy pary bazowe – wskutek oddziaływania czynników zewnętrznych – oddzielają się od siebie, wnika pomiędzy nie woda. Jako jednak, że wnętrze DNA powinno być suche, obie nici zaczynają przylegać do siebie, wypychając wodę. Problem ten nie istnieje w środowisku hydrofobowym, zatem tam pary bazowe pozostają oddzielone.
Komentarze (7)
Jajcenty, 23 września 2019, 14:46
To mi się nie zgadza. Ten polieter jest hydrofilowy do bólu, miesza się z wodą w każdym stosunku. Główny zagęszczacz kosmetyków w szczególności tych co się mają rozpuszczać w wodzie.
Mariusz Błoński, 23 września 2019, 20:38
Przyjrzałem się temu i najwyraźniej w źródle zrobili babola. Poprawione. Zaraz do nich napiszę, z pytaniem, czy na pewno wszystko jest ok.
Mariusz Błoński, 24 września 2019, 20:53
Nie zrobili w źródle babola. Autor badań wyjaśnia to tak:
Short answer: In a DNA context, PEG is the most hydrophobic cosolute available which does not precipitate DNA. I agree many people say PEG is hydrophilic. What they really mean is that PEG easily dissolves in water. But for example HPLC solvent data (for example https://sites.google.com/site/miller00828/in/solvent-polarity-table ) lists dioxane, dimethoxy ethane, and diglyme (essentially very short PEG chains) among the more nonpolar solvents. Since we need a water solution to study DNA, we choose PEG-400, diglyme, and dioxane to be co-solutes. They provide the most hydrophobic environment possible, while also being DNA-compatible. Yes the wording in the press release could be misleading. Maybe they (and we in the manuscript) should be more careful when using “hydrophobic” as a shorthand for “reduced water concentration”/”environment with few water molecules”.
Jajcenty, 25 września 2019, 08:59
Dziękuję za sprawdzenie. Ulegam presji autorytetu i z bólem serce akceptuję takie użycie 'hydrofobii', sądzę że na nasze to mogłoby być 'bezwodny', ale 'bezwodny' jest kategorią bardzo ostrą, zatem 'niskie stężenie wody' jest chyba najlepsze
Stankot, 27 września 2019, 09:52
Nie ma czegoś takiego jak "pary bazowe" w DNA.
Jajcenty, 27 września 2019, 17:50
Kurcze, schowało się w ślepej plamce. Baza , zasada co za różnica?
jabadabaduuu, 30 września 2019, 21:02
Serio, dopiero się teraz dowiedzieli, że efekt enropowy rządzi światem również DNA?