Niektóre czarne dziury mogą nie być czarnymi dziurami? Równania Friedmanna a GEODE
Jeśli to, co uznawaliśmy za czarne dziury jest w rzeczywistości obiektami nieposiadającymi osobliwości, wówczas przyspieszające rozszerzanie wszechświata jest naturalną konsekwencją Einsteinowskiej ogólnej teorii względności, mówi Kevin Croker z Uniwersytetu Hawajskiego. Croker i jego kolega opublikowali na łamach Astrophysical Journal artykuł, w którym stwierdzają, że niektóre obiekty uznawane obecnie za czarne dziury, mogą nie być czarnymi dziurami, ale obiektami pełnymi ciemnej energii.
Kevin Croker i emerytowany profesor matematyki Joel Weiner nie zajmowali się badaniem czarnych dziur. Przyglądali się równaniom Friedmanna, które zostały przez ich twórcę wywiedzione z teorii Einsteina. Fizycy wykorzystują te równania do opisu rozszerzania się wszechświata, gdyż za ich pomocą łatwiej jest prowadzić obliczenia. Naukowcy zauważyli, że aby poprawnie zapisać równania Friedmanna, ultragęste izolowane obiekty we wszechświecie, takie jak gwiazdy neutronowe czy czarne dziury muszą być – z matematycznego punktu widzenia – traktowane jak cała reszta. Dotychczas kosmolodzy uważali, że w obliczeniach należy pomijać szczegóły dotyczące tych obiektów.
Wykazaliśmy, że istnieje tylko jeden prawidłowy sposób na tworzenie tych równań. A jeśli zrobi się to w ten sposób, można dojść do bardzo interesujących wniosków, mówi Croker.
Z obliczeń wynika, że cała ciemna energia, potrzebna do przyspieszania rozszerzania się wszechświata, może znajdować się w obiektach uznawanych obecnie za czarne dziury. Co więcej wykazali, że te alternatywy dla czarnych dziur – nazwane Generycznymi Obiektami Ciemnej Energii (GEODE – Generic Objects of Dark Energy) – pozwalają również wyjaśnić pewne cechy fal grawitacyjnych.
Wyliczenia, dokonane przez Crokera i Weinera wykazały, że GEODE, ultragęste obiekty pełne ciemnej energii, ale niezawierające osobliwości, zyskują masę wyłącznie przez to, że wszechświat się rozszerza. Ich masa zwiększa się, nawet gdy w pobliżu nie ma materii, którą mogłyby wchłonąć. Tak, jak światło podróżujące przez rozszerzający się wszechświat traci energię, co widzimy w postaci przesunięcia w podczerwieni, tak i materia traci masę w miarę rozszerzania się wszechświata. Zwykle efekt ten jest zbyt słaby, by go zauważyć. Jednak w ultragęstych środowiskach, wewnątrz których panuje niezwykle wysokie ćiśnienie, mamy do czynienia z materiałem relatywistycznym, a tam efekt utraty masy przez materię jest zauważalny. Ciemna materia jest relatywistyczna i panujące wewnątrz niej ciśnienie działa inaczej niż na materię czy światło. Zatem obiekty zbudowane z ciemnej energii, jak GEODE, z czasem zyskują masę.
Hipoteza dotycząca GEODE pojawiła się w latach 60. ubiegłego wieku, ale dopiero ostatnio opracowano metody matematyczne, pozwalające badać te obiekty. Dzięki pracy Crokera i Weinera wydaja się, że za ich pomocą w prosty sposób można wyjaśnić pewne zjawiska zaobserwowane podczas rejestracji fal grawitacyjnych pochodzących z połączenia dwóch czarnych dziur. Gdy LIGO po raz pierwszy wykrył fale grawitacyjne wyliczono, że pochodzą one z połączenia czarnych dziur o masach 29 i 36 mas Słońca. Tymczasem naukowcy spodziewali się innych mas.
Jednak GEODE, w przeciwieństwie do czarnych dziur, zyskują z czasem masę. Uformowane w młodym wszechświecie GEODE mogły z czasem zyskać na masie i to właśnie one mogły się zderzyć, co zostało zaobserwowane przez LIGO. Wyjaśnienie takie jest znacznie prostsze niż przyjęcie, że mieliśmy do czynienia z czarnymi dziurami o takich, a nie innych masach.
Nie wszyscy są przekonani do twierdzeń Crokera i Weinera. Profesor fizyki Vitor Cardoso z Instituto Superior Tecnico w Lizbonie mówi, że zaprezentowany opis GEODE jest sprzeczny z intuicją i trudny do przyjęcia. Dodaje przy tym: podoba mi się pomysł znalezienia alternatyw dla czarnych dziur. To zmusi nas to wzmocnienia teorii opisującej czarne dziury. Poza tym, jeśli nie będziemy takiej alternatywy szukali, to nigdy jej nie znajdziemy.
Badania opisano w artykule Implications of Symmetry and Pressure in Friedmann Cosmology. I. Formalism
Komentarze (9)
Jajcenty, 3 października 2019, 09:51
Hm, czyli od pewnego momentu (po maturze?) nie martwimy prawami zachowania masy, energii, pędu?
Sławko, 3 października 2019, 12:25
Moim zdaniem, to jest zła interpretacja. Martwimy się, ale uwzględniamy także przestrzeń, której wpływ był do tej pory pomijany. Tymczasem przestrzeń też czymś jest. Hawking udowadniał, że przestrzeń to ujemna energia. Dotychczasowe pomijanie jej zmian w czasie w obecnych równaniach, pewnie było błędem. Aczkolwiek w normalnych warunkach (takich jak na Ziemi) ten wpływ może być znikomy, dlatego nikt go nie zauważył w eksperymentach.
Jajcenty, 3 października 2019, 23:20
No to ile trzeba tej przestrzeni, żeby zrobić artefakt ciężki jak BH? A jednocześnie wielkie, z naszego punktu widzenia, obszary przestrzeni wnoszą tak niewiele, że nie zauważamy tego w eksperymentach i trzeba spekulować zamiast zmierzyć.
Zdolność wykonania pracy choć w połączeniu z entropią nie jestem już taki pewny czy to dobra definicja
Sławko, 3 października 2019, 23:45
Nie wiem. Policz sobie, jeśli cię to interesuje. Może Kevin Croker podpowie ci jak to policzyć.
Grawitacja też jest oddziaływaniem słabym, a jednak w pewnych warunkach może uwięzić światło.
ex nihilo, 4 października 2019, 05:09
W tym przypadku może raczej "kosztem czego" - z tekstu by wynikało, że rozpirzania całej reszty Wszechświata.
Ale... abstranotego od konkretu, bo oryginalny artykuł długaśny,. cholernie robaczywy i raczej czysto teoretyczny tylko, chociaż czort wie, no i przeżuwać go przez miesiąc mi się nie chce.
Prawa zachowania = symetrie (Noether). Zakładając poprawność tego równania, dostajemy pytanie o symetrię, która lub której złamanie umożliwiło (umożliwia) istnienie tego całego diabelstwa dookoła (i w środku też):
- czy jest ona ukryta -> w uproszczeniu "suma wszystkiego = 0"
- czy może "to wszystko" jest skutkiem złamania jakiejś symetrii absolutnej, zawierającej w sobie wszystkie możliwe (i niemożliwe też).
Zresztą jedno nie wyklucza drugiego. A symetria absolutna (nieskończona) pewnie powinna nie tylko pozwalać na dowolne jej łamanie, ale nawet takie łamanie swoją nieskończonością wymuszać.
No dobra, to tyle, bo mi się już całkiem ponotego pod kopułą
A co to jest "praca"?
Jajcenty, 4 października 2019, 09:17
Miara energii jaką układ może wymienić zmieniając swój stan. I w ten sposób zrobiliśmy kółko.Wiem, większość pojęć fizycznych smakowana, 'roztarta na języku' traci sens.
Manifestacja reguły przekory? Wszechświat się robi coraz rzadszy więc coś się staje cięższe żeby nadrobić gęstość.
Zajrzałem do źródła, ale te robaki wymagają trochę czasu. Tak się zastanawiam, jeśli to wyżera przestrzeń, to powinniśmy obserwować jakieś przesunięcia do nadfioletu, a minimum to mniejszy red shift niż by to wynikało z odległości.
Jajcenty, 5 października 2019, 10:02
Kwestia uzyskiwania masy kosztem roszerzającego się Wszechświata - jeśli to jakoś spowalnia lub wręcz 'cofa' puchnięcie przestrzeni powinniśmy widzieć to na wykresach przesunięcia do czerwieni?
thikim, 6 października 2019, 20:44
Dopóki CD ma temperaturę mniejszą niż mikrofalowe promieniowanie tła to będzie więcej chłonąć niż oddawać. Niezależnie od tego czy ma te nowe hipotetyczne właściwości czy nie.
Zawiedzeni będą ci którzy w energii próżni upatrywali ciemnej energii.
Jajcenty, 7 października 2019, 13:55
Sugerujesz że chodzi o równowagę termiczną? A co z promieniowaniem Hawkinga? Gdzieś niedawno widziałem oszacowanie, że mała CD ok 1 kg znika spektakularnie w ułamku ułamka sekundy (1.0e-27) zostawiając po sobie jakieś megatony energii.