Obronienie Ziemi będzie trudniejsze, niż sądziliśmy
Popularnym motywem filmowym jest asteroida zagrażająca Ziemi i grupa śmiałków, która ratuje planetę przed katastrofą. Jednak, jak się okazuje, zniszczenie asteroidy może być trudniejsze, niż dotychczas sądzono, donoszą naukowcy z Uniwersytetu Johnsa Hopkinsa (JHU). Wyniki ich badań, które zostaną opublikowane 15 marca na łamach Icarusa, pozwolą na opracowanie lepszych strategii obrony przed asteroidami, zwiększą naszą wiedzę na temat ewolucji Układu Słonecznego oraz pomogą stworzyć technologie kosmicznego górnictwa.
Zwyczajowo przypuszczamy, że większe obiekty jest łatwiej rozbić, gdyż z większym prawdopodobieństwem zawierają one różnego rodzaju słabości. Jednak nasze badania wskazują, że asteroidy są bardziej wytrzymałe niż sądzimy, a do ich całkowitego zniszczenia potrzeba więcej energii, mówi świeżo upieczony doktor Charles El Mir w Wydziału Inżynierii Mechanicznej JHU.
Współczesna nauka dobrze rozumie budowę skał, które może badać w laboratorium. Ale trudno jest przełożyć wyniki uzyskane z badania obiektu wielkości pięści na obiekt wielkości miasta. Na początku bieżącego wieku kilka zespołów naukowych stworzyło model komputerowy uwzględniający takie czynniki jak masa, temperatura, kruchość materiału. Model posłużył do symulacji uderzenia asteroidą o średnicy 1 kilometra w asteroidę o średnicy 25 kilometrów. Zderzenie miało miejsce przy prędkości 5 km/s, a model wykazał, że większa asteroida zostanie całkowicie zniszczona.
Podczas najnowszych badań El Mir oraz jego współpracownicy, K.T. Ramesh dyrektor Instytutu Materiałów Ekstremalnych JHU oraz profesor Derek Richardson, astronom z University of Maryland, przetestowali ten sam scenariusz, ale wykorzystując do tego model komputerowy Tonge-Ramesha, który bierze pod uwagę procesy zachodzące na mniejszą skalę podczas zderzenia asteroid. Model z początku wieku nie brał pod uwagę ograniczonej prędkości powstawania pęknięć podczas zderzenia.
Symulację podzielono na dwa etapy: krótszy etap fragmentacji i długoterminowej ponownej akumulacji grawitacyjnej. Fragmentacja rozpoczyna się w ciągu ułamków sekund po zderzeniu, natomiast ponowna kumulacja to proces biorący pod uwagę wpływ grawitacji na kawałki, które oddzieliły się od asteroidy po zderzeniu, ale wskutek grawitacji ponownie się do siebie zbliżają.
Symulacja wykazała, że zaraz po uderzeniu powstały miliony pęknięć, część materiału asteroidy została odrzucona i uformował się krater. Symulacja brała pod uwagę dalszy losy poszczególnych pęknięć i ich rozwój. Nowy model wykazał, że asteroida nie została rozbita po uderzeniu. To, co z asteroidy pozostało, wywierało następnie duży wpływ grawitacyjny na oderwane fragmenty i je przyciągało.
Okazało się, że uderzona asteroida nie zamieniła się w gromadę luźnych kawałków. Nie rozpadła się całkowicie, rozbite fragmenty przemieściły się wokół rdzenia asteroidy. To może być przydatna informacja, którą zechcą studiować specjaliści ds. kosmicznego górnictwa.
Badania dotyczące ochrony przed asteroidami są bardzo skomplikowane. Na przykład musimy odpowiedzieć sobie na pytanie, czy gdyby wielka asteroida podążała w kierunku Ziemi, to lepiej byłoby ją rozbić na kawałki czy przekierować? A jeśli zechcemy ją przekierować, to jakiej siły musimy użyć, by zmieniła tor lotu, ale by jej nie rozbić, zauważa El Mir.
Dość często na Ziemię spadają niewielkie asteroidy, takie jak ten z Czelabińska. Jednak jest tylko kwestią czasu, gdy akademickie badania będziemy musieli przełożyć na praktykę i bronić się przed dużą asteroidą. Musimy być gotowi, gdy ten czas nadejdzie, a badania naukowe to kluczowy element decyzji, którą wówczas będziemy podejmowali, mówi profesor Ramesh.
Komentarze (14)
Jajcenty, 4 marca 2019, 19:41
Przekierować, rozbić o Księżyc, cokolwiek. Wydaje mi się, że niezależnie od tego w ilu kawałka dotrze do nas asteroida, to wyzwolona energia będzie taka sama. Jasne, sporo tej energii wytworzy się w górnych warstwach atmosfery, ale jak to będzie duży kamień to i tak nas ugotuje. Dlatego raczej potrzeba nam propelerków, żeby spychać z kursu co większe sztuki. imho.
rahl, 4 marca 2019, 22:38
Najważniejszy trik to wczesna detekcja, odpowiednio wcześnie wykryte zagrożenia można będzie relatywnie łatwo zneutralizować. Np pomalować jedną stronę na znacząco jaśniejszy lub ciemniejszy kolor. Resztę roboty zrobi słoneczko.
tempik, 5 marca 2019, 07:10
to zależy czy obiekt rotuje(a chyba wszystkie to robią?) i jaka jest jego oś obrotu
thikim, 5 marca 2019, 07:14
Hmm. Ten artykuł jednak podrzuca nam inną metodę. Jakbyśmy na orbicie zebrali te wszystkie nasze śmieci i ulepili na kształt kuli - którą to byśmy w jakiś sposób poprzez np. zwierciadła mogli powoli sterować to można by ją tak wysterować że uderzyłaby w asteroidę która by była na kursie kolizyjnym z Ziemią.
Ergo Sum, 5 marca 2019, 13:32
Naukowcy zakładają że asteroidy do duże skały, podczas gdy większość obserwacji wskazuje że to zlepek drobnego rumoszu, czasem twardy, czasem bardzo zlodowaciały ale jednak rumosz - czyli zachowuje się jak granulat a nie ja skała. Skałę łatwo jest rozsadzić, rumosz nie, energia szybko się traci. W dodatku poszczególnym bryłkom trzeba by nadać prędkość ucieczki z grawitacji - co prawda jest ona niewielka, ale i tak aby bryłka skutecznie odleciała potrzebne jest pokonanie tej bariery. To wszystko wymaga siły, precyzyjnie ukierunkowanej a nie bezładnej - bo w rumoszu siły będą po serii uderzeń się niwelować. Dlatego lepiej jest traktować asteroidę jako jeden obiekt, za pomocą stałego ciągu próbować powstrzymać rotację a następnie pomalować jedną stronę i stabilizować aby się nie odwróciła.
thikim, 5 marca 2019, 14:34
Malowanie takiego rumoszu może być trochę trudne. To nie ściana. Powierzchnia jest dużo większa ze względu na porowatość.
rahl, 5 marca 2019, 20:26
dlatego napisałem "Np"
tempik, 5 marca 2019, 20:54
Puki co nie potrafimy ze 100% pewnością określić czy asteroida jest na kursie kolizyjnym czy jednak minie nas. Żeby była szansa reakcji, trzeba taką wiedzę mieć bardzo wcześnie, jak asteroida jest bardzo daleko. Do tego trzeba mieć pojazd który będzie szybciej pędził w kierunku asteroidy niż ona w naszym. Na koniec dobrze by było żeby w odpowiednim czasie np. odpalić jakąś dużą głowicę atomową obok niej, żeby lekko skorygować jej trajektorię. Na razie nic z tych rzeczy nie jest w naszym zasięgu.
pogo, 5 marca 2019, 21:38
To potrzebna jest "farba" o większej lepkości/granulacji by nie wsiąkała tak łatwo.
Ciekawy jestem czy taki luźny kawałek lodu i skał jest równie niebezpieczny. Wydaje mi się, że rozsypie się w górnych warstwach atmosfery i będzie miał większą powierzchnię nagrzewania się, straci więc więcej energii i tym samym masy nim dotrze do powierzchni.
Z drugiej strony trafienie czegoś takiego z odpowiednią siłą od boku powinno znacząco zmienić jego trajektorię prawie nie zmieniając znacząco integralności obiektu. To się wydaje bardziej sensowne.
thikim, 5 marca 2019, 21:59
Do tego ten rumosz potrafi sporo masy odrzucać na widok Słońca. Może odrzucić tę część z farbą.
W każdym razie zmierzam do tego że malarz pokojowy tu nie wystarczy. To dość trudna operacja. Jak mniemam łatwiej będzie albo tam wysłać kilka Carów albo jednak przywalić jakimś sztucznym obiektem który sobie zrobimy na orbicie.
Wystarczyłoby tylko dodać w przepisach dot. satelitów: "pod koniec życia ma wykonać takie a takie manewry"
pogo, 6 marca 2019, 21:31
@thikim
Widzę 2 problemy w tym:
1. jest to jednak bardzo niewielka masa w porównaniu z tym, czym chcielibyśmy uderzyć w zagrażającą asteroidę (masa śmieci orbitalnych jest szacowana na 5500 ton, a masa skały o średnicy 5km, to tak na szybko oszacowane 80 miliardów ton - dla obiektu kulistego o gęstości 4t/m3)
2. wyobrażasz sobie skuteczne rozpędzenie nawet tej masy wiszącej na orbicie by osiągnęła II kosmiczną? (tak wiem, na orbicie jest ona dużo mniejsza, ale wciąż spora i trzeba dużo energii dla takiego skupiska gruzu i złomu)
Nikt o zdrowych zmysłach nie będzie chciał uderzać w asteroidę gdy jest mniej niż milion kilometrów od nas! Takie manewry lepiej wykonywać gdy mamy jeszcze zapas co najmniej 100 000 km.
thikim, 6 marca 2019, 23:09
Zgadza się. Ale zauważ że tendencja jest wzrostowa. Do tego dodaj różnicę prędkości która wyzwoli całkiem sporą ilość energii.
Ja nie piszę że to ma być gotowe za 2 lata. My tę potrzebę obrony możemy mieć za lat 100.
Za 100 lat to już będzie z milion ton - jeśli będziemy to planować.
Może jednak najlepszym sposobem będzie budowa potężnego lasera na orbicie.
tempik, 7 marca 2019, 07:36
i to chyba jest najlepszy kierunek. raz że nie będzie strat mocy w próżni, dwa będzie można go odpalić natychmiast po wykryciu zagrożenia i miesiącami czy nawet latami ciągle spychać obiekt z kursu kolizyjnego. A jak obiekt będzie miał sporo wody i co2 to dzięki odparowywaniu gazów będzie to jeszcze łatwiejsze.
thikim, 7 marca 2019, 16:44
Jeden błąd
Trzeba zbudować dwa lasery na Księżycu