Polsko-włoski zespół pokazał, jak w mózgu rozpoczyna się i kończy napad epilepsji
Na całym świecie na epilepsję cierpi około 50 milionów osób, co czyni ją jedną z najbardziej rozpowszechnionych chorób neurologicznych. Około 70% z nich mogłoby nie doświadczać napadów padaczkowych, gdyby zostali odpowiednio zdiagnozowani i leczeni. Niestety, w przypadku części osób leki nie działają. Polsko-włoski zespół z Wydziału Fizyki UW oraz Istituto Neurologico Carlo Besta przeprowadził badania, które mogą pomóc lepiej zrozumieć mechanizm powstawania napadów padaczkowych, a tym samym przyczynić się do powstania doskonalszych leków.
Przez dekady sądzono, że napad epilepsji rozwija się, gdy dochodzi do pobudzenia kolejnych neuronów. Jednak w latach 80. ubiegłego wieku naukowcy stwierdzili, że napad padaczkowy nie wymaga komunikacji pomiędzy synapsami. Można ją zablokować, a napad będzie trwał nadal. Później, podczas kolejnych eksperymentów, uzyskano wyniki sugerujące, że indukcja i synchronizacja napadów padaczki może mieć przyczyny nie synaptyczne, ale jonowe, mówi współautor najnowszych badań, doktor Piotr Suffczyński z Wydziału Fizyki UW.
Neurony są komórkami naładowanymi elektrycznie. Wewnątrz nich i na zewnątrz zgromadzone są jony dodatnie i ujemne, tworzące potencjał spoczynkowy błony komórkowej. Gdy jony przepływają przez błonę, neurony zmieniają potencjał i generują impulsy elektryczne. Do komórki wpływają wówczas jony sodu, odpływają z nich jony potasu. Później, by przywrócić równowagę, pompy sodowo-potasowe wpompowują potas i wypompowują sód.
Już w latach 70. XX wieku pojawiła się hipoteza, zgodnie z którą podczas szybkiego wyzwalania neuronów dochodzi do dużego nagromadzenia sodu wewnątrz komórek i potasu na zewnątrz. Duża liczba jonów potasu zwiększa potencjał błony komórkowej, coraz bardziej pobudza neurony, co prowadzi do jeszcze większego gromadzenia się potasu. W ten sposób powstaje napad padaczkowy. W tamtym czasie [hipoteza ta – red.] została odrzucona, ponieważ naukowcy nie byli w stanie wyjaśnić, w jaki sposób dochodzi do zakończenia napadu. Dziś wiemy, że oprócz pomp sodowo-potasowych odpowiadają za to m.in. komórki glejowe w mózgu, które nie tylko odżywiają neurony, ale mają za zadanie usuwać nadmiar potasu z przestrzeni wokół neuronów, wyjaśnia doktor Suffczyński.
Naukowcy z Uniwersytetu Warszawskiego wykorzystali więc dane doświadczalne do stworzenia pierwszego kompletnego komputerowego modelu napadu padaczkowego. Składa się on z 1 komórki hamującej, 4 pobudzających, komórek glejowych i otoczenia neuronów. Dzięki niemu udało się nie tylko wykazać, że napad padaczki może rozpocząć się od wyładowań neuronów hamujących w mózgu, ale również dowiedzieliśmy się, jak ustaje napad padaczkowy.
Gdy dochodzi do nierównowagi sodowo-potasowej pompy sodowo-potasowe zaczynają pracować bardziej intensywnie. W każdym cyklu przenoszą dwa jony potasu do komórki i trzy jony sodu z komórki. Zatem w cyklu dochodzi do usunięcia jednego jonu dodatniego i obniżenia potencjału elektrycznego komórki. W ten sposób mamy do czynienia z ujemnym przesunięciem potencjału błony i zatrzymania napadu. Nasze wyniki pokazują, że napad padaczkowy jest procesem fizjologicznym wywołanym destabilizacją poziomu potasu w mózgu. Wskazuje to cele dla nowych strategii terapeutycznych, dodaje Suffczyński.
Komentarze (0)