Na Międzynarodowej Stacji Kosmicznej udało się uzyskać kondensat Bosego-Einsteina
Amerykańskim fizykom udało się uzyskać kondensat Bosego-Einsteina na pokładzie Międzynarodowej Stacji Kosmicznej. Co prawda tamtejsze laboratorium nie osiąga jeszcze tak niskich temperatur, jak instalacje na Ziemi, jednak w przyszłości ISS może stać się idealnym miejscem do testowania kwantowo-mechanicznych grawimetrów i prowadzenia najbardziej precyzyjnych testów zasady równoważności.
Kondensat Bosego-Einsteina to nowy stan skupienia materii. Został on przewidziany przez Sayendrę Natha Bosego i Alberta Einsteina w latach 20. ubiegłego wieku, a otrzymano go dopiero w roku 1995. Z kondensatem mamy do czynienia wówczas, gdy po przekroczeniu temperatury krytycznej znaczna część cząstek zaczyna zachowywać się identycznie, przypominając jedną cząstkę.
Kondensat uzyskuje się zamykając gaz złożony z atomów bozonowych w pułapce magnetycznej i chłodząc go za pomocą lasera. Powstaje kondensat, który jest uwalniany z pułapki, by mógł zachowywać się w sposób naturalny i badany. Eksperymenty takie są jednak poważnie zakłócane przez grawitację. Powoduje ona, że po uwolnieniu z pułapki atomy błyskawicznie opadają i uderzają o podłoże. Dlatego też naukowcy próbują różnych rozwiązań – polegających na zapewnieniu atomom jak najdłuższego swobodnego spadku – by wydłużyć czas pomiędzy uzyskaniem kondensatu a opadnięciem atomów i kontaktem z podłożem. W tym celu kondensaty zrzuca się z wież czy umieszcza na pokładzie samolotów czy rakiet w locie parabolicznym.
Najlepszym miejscem do tego typu eksperymentów byłyby więc warunki jak najmniejszej grawitacji. To nie tylko wydłużyłoby czas badania kondensatu, ale pozwoliłoby stopniowo osłabiać pola magnetyczne pułapki, dzięki czemu atomy powoli by się rozprzestrzeniały i chłodziły do jeszcze niższych temperatur.
Nowe badania zostały przeprowadzone za pomocą Cold Atom Lab (CAL). To laboratorium zostało wyniesione na ISS w 2018 roku i znajduje się na pokładzie amerykańskiego modułu Destiny. Zbudowane kosztem 70 milionów dolarów zdalnie sterowane urządzenie ma objętość zaledwie 0,4 m3, jednak zawiera lasery, magnesy i inne urządzenia potrzebne do uwięzienia, schłodzenia i kontrolowania gazu. Atomy są początkowo przechowywane w centrum komory próżniowej, później transportowane są do "atomowego chipa", na szczycie komory. Układ ten wykorzystuje fale radiowe do odrzucenia cieplejszych atomów, pozostawiając tylko te, których temperatura wynosi mniej niż miliardowa część kelwina.
Robert Thompson, David Aveline i ich koledzy z Jet Propulsion Laboratory wykorzystali CAL do uzyskania kondensatu Bosego-Einsteina z atomów rubidu-87. Kondensat był obecny przez 1,18 sekundy i zauważono w nim wiele odmiennych charakterystyk od analogicznego kondensatu uzyskiwanego na Ziemi. Najważniejszym spostrzeżeniem było stwierdzenie, że niektóre z atomów rubidu pozostały w oddaleniui odl kondensatu i utworzyły wokół niego halo. Atomy te były utrzymywane za pomocą efektu Zeemana. W warunkach ziemskich opadają one na dno pułapki.
Mimo, że CAL to niewielkie zdalnie sterowane urządzenie, to uzyskane w nim kondensaty już teraz dorównują tym najlepszym kondensatom uzyskiwanym w ziemskich warunkach. Jak zauważa Bryntle Barrett z francuskiego Institut d’Optique d’Aquitaine, olbrzymią zaletą eksperymentów na orbicie jest fakt, że potencjalnie można tam zapewnić całe lata swobodnego spadku, co pozwoli naukowcom na ciągłe udoskonalanie parametrów eksperymentów. Dlatego też uczony uważa, że uzyskanie kondensatu Bosego-Einsteina na ISS to znaczący krok w kierunku prowadzenia w przestrzeni kosmicznej wysoce precyzyjnych eksperymentów z kwantowymi gazami.
Specjaliści już mówią o kilku różnych rodzajach takich eksperymentów. Jednak najbardziej obiecującymi z nich będą badania nad atomowymi interferometrami. Takie interferometry pozwoliłyby nie tylko na badanie zjawiska swobodnego spadku, ale posłużyłyby do niezwykle precyzyjnego monitorowania środowiska czy poszukiwania minerałów z przestrzeni kosmicznej.
Barrett mówi, że już teraz w środowisku naukowym pojawiły się propozycje wystrzelenia dedykowanego satelity, który wykorzystywałby kondensat Bosego-Eisteina do badania zjawiska grawitacji. Taki satelita byłby wolny od wibracji obecnych na Międzynarodowej Stacji Kosmicznej. W tej dekadzie będziemy świadkami realizacji części z tych ekscytujących propozycji, stwierdza uczony.
Komentarze (5)
mcezar, 19 czerwca 2020, 11:18
Jak to " tamtejsze laboratorium nie osiąga jeszcze tak niskich temperatur, jak instalacje na Ziemi" - a nie wystarczy wystawić go za okno?
Czego jak czego, ale niskich temperatur chyba w kosmosie nie brakuje.
ex nihilo, 19 czerwca 2020, 12:05
Raczej nie wystarczy
tempik, 20 czerwca 2020, 14:27
W cieniu iss to aż -160sc więc raczej za gorąco. A nawet jeśli odlecieć gdzieś daleko żeby osiągnąć temperaturę tła to i tak słabo w porównaniu z naziemnymi instalacjami gdzie można zejść do uK.
pinopa, 21 czerwca 2020, 08:16
Robert Thompson, David Aveline i ich koledzy z Jet Propulsion Laboratory odkryli bardzo ważną właściwość atomów - w trakcie doświadczenia odkryli potencjałowe powłoki, dzięki którym istnieje stabilna postać materialnych struktur. Odkryli wypadkowe sferyczne powłoki o bardzo dużych promieniach, które są wynikiem sumowania się powłok neuronów i protonów. Dzięki powłokom o najmniejszych promieniach (czyli powłokom jądrowym) powstają atomy, a dzięki następnej rodzinie powłok (powłok molekularnych) z atomów tworzą się molekuły różnych związków chemicznych. Na ten temat można więcej poczytać w art. "Istota fundamentalnych cząstek materii i oddziaływań" na http://pinopa.narod.ru/11_C3_Protoelektron.pdf.
darekp, 21 czerwca 2020, 09:55
Szczerze mówiąc, nie zrozumiałem, dlaczego jego, a nie Satyendry Nath Bosego;) W obu przypadkach nie ma pewności, czy odpowiedzą (obstawiałbym, że w przypadku pierwszego prawdopodobieństwo jest mniejsze), a za to w przypadku drugiego przynajmniej wiadomo, że jeśli odpowie, to mając dostęp do wiedzy znacznie wykraczającej poza współczesną fizykę;)