Algorytm sztucznej inteligencji równie dobrze wykrywa raka piersi jak radiolodzy
Porównanie trzech komercyjnych systemów sztucznej inteligencji wykorzystywanej w diagnostyce obrazowej raka piersi wykazało, że najlepszy z nich sprawuje się równie dobrze jak lekarz-radiolog. Algorytmy badano za pomocą niemal 9000 obrazów z aparatów mammograficznych, które zgromadzono w czasie rutynowych badań przesiewowych w Szwecji.
Badania przesiewowe obejmujące dużą część populacji znacząco zmniejszają umieralność na nowotwory piersi, gdyż pozwalają na wyłapanie wielu przypadków na wczesnym etapie rozwoju choroby. W wielu takich przedsięwzięciach każde zdjęcie jest niezależnie oceniane przez dwóch radiologów, co zwiększa skuteczność całego programu. To jednak metoda kosztowna, długotrwała, wymagająca odpowiednich zasobów. Tutaj mogłyby pomóc systemy SI, o ile będą dobrze sobie radziły z tym zadaniem.
Chcieliśmy sprawdzić, na ile dobre są algorytmy SI w rozpoznawaniu obrazów mammograficznych. Pracuję w wydziale radiologii piersi i słyszałem o wielu firmach oferujących takie algorytmy. Jednak trudno było orzec, jaka jest ich jakość, mówi Fridrik Strand z Karolinska Institutet.
Każdy z badanych algorytmów to odmiana sieci neuronowej. Każdy miał do przeanalizowania zdjęcia piersi 739 kobiet, u których w czasie krótszym niż 12 miesięcy od pierwotnego badania wykryto raka piersi oraz zdjęcia 8066 kobiet, u których w czasie 24 miesięcy od pierwotnego badania nie wykryto raka piersi. Każdy z algorytmów miał ocenić zdjęcie w skali od 0 do 1, gdzie 1 oznaczało pewność, iż na zdjęciu widać nieprawidłową tkankę.
Trzy systemy, oznaczone jako AI-1, AI-2 oraz AI-3 osiągnęły czułość rzędu 81,9%, 67,0% oraz 67,4%. Dla porównania, czułość w przypadku radiologów jako pierwszych interpretujących dany obraz wynosiła 77,4%, a w przypadku radiologów, którzy jako drudzy dokonywali opisu było to 80,1%. Najlepszy z algorytmów potrafił wykryć też przypadki, które radiolodzy przeoczyli przy badaniach przesiewowych, a kobiety zostały w czasie krótszym niż rok zdiagnozowane jako chore.
Badania te dowodzą, że algorytmy sztucznej inteligencji pomagają skorygować fałszywe negatywne diagnozy postawione przez lekarzy-radiologów. Połączenie możliwości AI-1 z przeciętnym lekarzem-radiologiem zwiększało liczbę wykrytych nowotworów piersi o 8%.
Zespół z Karolinska Institutet spodziewa się, że jakość algorytmów SI będzie rosła. Nie wiem, jak efektywne mogą się stać, ale wiem, że istnieje kilka sposobów, by je udoskonalić. Jednym z nich może być np. ocenianie wszystkich 4 zdjęć jako całości, by można było porównać obrazy z obu piersi. Inny sposób to porównanie nowych zdjęć z tymi, wykonanymi wcześniej, by wyłapać zmiany, mówi Strand.
Pełny opis eksperymentu opublikowano na łamach JAMA Oncology.
Komentarze (0)