Kosmiczne czterolistne koniczynki

| Astronomia/fizyka
The GraL Collaboration

Czy w kosmosie także możemy znaleźć czterolistne koniczynki? Odkrył je międzynarodowy zespół naukowców. Współautorem badań jest Jean Surdej, profesor wizytujący w Instytucie Obserwatorium Astronomicznym UAM w Poznaniu. Te czterolistne koniczynki, to kwazary – niezwykle jasne jądra odległych galaktyk, które napędzane są przez znajdujące się w nich supermasywne czarne dziury. Zespół odkrył ich aż tuzin, a ich promienie świetlne zostały zniekształcone przez naturalnie występujące kosmiczne „soczewki” i rozdzielone na cztery podobnie wyglądające obrazy.

R. Hurt (IPAC/Caltech)/The GraL Collaboration

Przez ostatnie cztery dekady astronomowie zaobserwowali około 50 takich „kosmicznych koniczynek”. Najnowsze badania, trwające zaledwie półtora roku, zwiększyły tą liczbę o około 25 procent, pokazując jak potężnym narzędziem jest uczenie maszynowe, wspomagające astronomów w poszukiwaniach tych kosmicznych osobliwości.

Quady (lub kosmiczne czterolistne koniczynki) to kopalnie złota z punktu widzenia rozmaitych zagadnień. Mogą pomóc w wyznaczeniu prędkości rozszerzania się Wszechświata i rozwiązaniu innych tajemnic, związanych np. z ciemną materią czy 'centralnym napędem' kwazarów – mówi Daniel Stern, kierownik zespołu badawczego z Jet Propulsion Laboratory, zarządzanego przez Caltech dla NASA. Nie są to zwykłe igły w stogu siana, ale raczej szwajcarskie scyzoryki ze względu na ogrom ich zastosowań.

Oczekujące na publikację w The Astrophysical Journal odkrycia umożliwiły narzędzia oparte o system uczący się oraz dane z kilku naziemnych i kosmicznych teleskopów, takich jak misja Gaia Europejskiej Agencji Kosmicznej, należący do NASA Wide-field Infrared Survey Explorer (WISE), Obserwatorium Kecka na hawajskim szczycie Mauna Kea, Obserwatorium Palomar należące do Caltech, New Technology Telescope w Chile Europejskiego Obserwatorium Południowego (ESO) czy teleskop Gemini South w Chile.

Kosmologiczny dylemat

W ostatnich latach pojawiła się rozbieżność związana z dokładną wartością tempa rozszerzania się Wszechświata, zwaną również stałą Hubble'a. Wartość tą można wyznaczyć dwiema metodami: jedna z nich jest zależna od pomiarów odległości i prędkości obiektów w naszym lokalnym wszechświecie, a druga ekstrapoluje prędkość  w oparciu o modele bazujące na szczątkowym promieniowaniu z czasów krótko po narodzinach Wszechświata, zwanym mikrofalowym promieniowaniem tła. Problem polega na tym, że liczby uzyskane tymi metodami nie pasują do siebie.

Może to wynikać z systematycznych błędów pomiarowych, ale wydaje się to coraz mniej prawdopodobne – mówi Stern. Bardziej kusząca wydaje się możliwość, że ta różnica oznacza, iż nasz model wszechświata jest błędny i mamy jeszcze coś nowego do odkrycia w dziedzinie fizyki.

Nowe „kosmiczne koniczynki”, którym zespół nadał przydomki takie jak „Wolf's Paw” (Łapa Wilka), „Dragon's Kite” (Smoczy Latawiec), „Gemini's Crossbow” (Kusza bliźniąt) czy „Microscope Lens” (Soczewka mikroskopu) pomogą w przyszłych oszacowaniach stałej Hubble'a-Lemaître i mogą wyjaśnić skąd bierze się rozbieżność między wcześniejszymi pomiarami.

Kwazary te znajdują się pomiędzy lokalnymi i odległymi obiektami, których obserwacje wykorzystano do wcześniejszych obliczeń, dzięki czemu umożliwiają astronomom zbadanie pośrednich odległości we Wszechświecie. Wyznaczenie stałej Hubble'a-Lemaître w oparciu o kwazary może wskazać, który z wcześniejszych pomiarów jest poprawny, albo – co byłoby jeszcze bardziej interesujące – może wykazać, że wartość tej stałej znajduje się gdzieś pomiędzy wartościami wyznaczonymi lokalnie i dla odległych obiektów, co wskazywałoby na nieznane dotąd zjawisko w fizyce.

Iluzje grawitacyjne

Powielenie obrazów kwazarów i innych obiektów kosmicznych ma miejsce gdy grawitacja bliższego obiektu, np. galaktyki, zakrzywia tor lotu światła i powiększa obraz obiektu znajdującego się w tle. To zjawisko, zwane soczewkowaniem grawitacyjnym, obserwowano już wielokrotnie. Zdarza się, że kwazary soczewkowane są w postaci dwóch podobnych obrazów. Znacznie rzadziej w postaci czterech.

Quady są lepsze niż podwójne kwazary z punktu widzenia badań kosmologicznych, takich jak pomiary odległości do obiektów, ponieważ mogą być doskonale wymodelowane – mówi współautor George Djorgovski, profesor astronomii z Caltech. Są stosunkowo czystymi laboratoriami dla tych kosmologicznych pomiarów.

W ramach nowych badań naukowcy użyli danych z WISE o stosunkowo niewielkiej rozdzielczości, aby wyszukać prawdopodobne kwazary, a następnie dane wysokiej rozdzielczości z misji Gaia, aby sprawdzić, które obrazy z WISE mogą potencjalnie zawierać kwazary w postaci poczwórnych obrazów. Następnie naukowcy wykorzystali uczący się system, aby wybrał najbardziej prawdopodobnych kandydatów na soczewkowane w postaci wielokrotnych obrazów kwazary, odrzucając zwykłe gwiazdy znajdujące się na niebie bardzo blisko siebie w podobnej konfiguracji. Dalsze obserwacje na teleskopach Kecka, w Obserwatorium Palomar, na New Technology Telescope oraz Gemini South potwierdziły, które z tych obiektów rzeczywiście są poczwórnymi obrazami kwazarów znajdujących się w odległości miliardów lat świetlnych od nas.

Współpraca ludzi i maszyn

Pierwsza "kosmiczna koniczynka" odkryta z pomocą systemu uczącego się, nazwana „Centaur's Victory” (Zwycięstwo Centaura), została potwierdzona podczas nocnych obserwacji zespołu w Caltech, we współpracy z uczonymi z Belgii, Francji i Niemiec, z wykorzystaniem dedykowanego komputera zlokalizowanego w Brazylii, wspomina współautor pracy Alberto Krone-Martins z UC Irvine. Zespół obserwował swoje obiekty zdalnie, wykorzystując teleskop w Obserwatorium Kecka.

Uczenie maszynowe było kluczowe w naszych badaniach, ale nie zastąpi decyzji podejmowanych przez człowieka – wyjaśnia Krone-Martins. Stale uczymy i poprawiamy modele w nieskończonej pętli, więc ludzie i ich doświadczenie są nieodzowną częścią tej pętli uczenia się. Jeśli mówimy o 'AI' w kontekście tego typu systemów uczących się, oznacza to „poszerzoną inteligencję”, nie sztuczną inteligencję.

 Alberto nie tylko opracował sprytne algorytmy uczenia maszynowego dla tego projektu, ale również zasugerował, aby użyć danych z misji Gaia, czego nie robiono wcześniej w tego typu projektach – mówi Djorgowski. To nie jest tylko historia poszukiwań interesujących soczewek grawitacyjnych ale również tego, jak połączenie big data i uczenia maszynowego może prowadzić do nowych odkryć.

Współautorem badań jest Jean Surdej, profesor wizytujący w Instytucie Obserwatorium Astronomicznym UAM w Poznaniu. Prof. Surdej aktualnie uczy studentów, doktorantów i młodych astronomów zagadnień związanych z soczewkowaniem grawitacyjnym. Soczewkowanie grawitacyjne polega na zakrzywianiu biegu promieni świetlnych odległego obiektu, np. kwazara, przez masywna galaktykę znajdującą się bliżej, co powoduje powstawanie "kosmicznych miraży". Jego zainteresowanie badaniami w tym kierunku trwa od 1983 roku, kiedy zaproponował, że niezwykła jasność najjaśniejszych kwazarów we Wszechświecie może być wynikiem wzmocnienia przez soczewkowanie grawitacyjne. Jego zespół odkrył i badał wiele przypadków takich kosmicznych miraży mających postać podwójnych obrazów tego samego kwazara. Kwazary o poczwórnych soczewkowanych obrazach są znacznie rzadsze. Odnalezienie ich można porównać do znalezienia czterolistnej koniczynki na zielonej łące. Można je więc nazwać „kosmicznymi koniczynkami”.

W 2002 roku Jean Surdej zaproponował, aby wykorzystać przegląd nieba wykonywany w ramach satelitarnej misji Gaia, realizowanej przez Europejską Agencję Kosmiczną, do wyszukiwania takich kosmicznych konicznek. Międzynarodowy zespół, do którego należy, ogłosił właśnie w czasopiśmie The Astrophysical Journal odkrycie tuzina tego typu kosmicznych miraży, dokonane z pomocą algorytmów sztucznej inteligencji zastosowanych do przeglądu danych z misji Gaia. Dalsze badania astrofizyczne tych nowo odkrytych kosmicznych koniczynek powinny umożliwić niezależne wyznaczenie wieku Wszechświata, prędkości jego ekspansji (stałej Hubble'a-Lemaître) i jego przyszłości.

soczewkowanie grawitacyjne kwazar