Naukowcy trenują sieci neuronowe do wykrywania uwolnień toksyn w czasie rzeczywistym

| Astronomia/fizyka
Pexels, CC (Pixabay)

W sytuacji, gdy dochodzi do wykrycia uwolnienia substancji niebezpiecznych, najważniejsze jest szybkie i precyzyjne zlokalizowanie źródła uwolnienia oraz przewidzenie kierunku rozchodzenia się substancji. Używane obecnie modele dyspersyjne wymagają bardzo dużych zasobów obliczeniowych. Mogą jednak zostać zastąpione przez modele bazujące na Sztucznych Sieciach Neuronowych, SSN (ang. Artificial Neutral Networks, ANN), co pozwoli na monitorowanie skażenia w czasie rzeczywistym. W badaniu możliwości wykorzystania takich modeli uczestniczą naukowcy z Departamentu Układów Złożonych NCBJ.

Obszar odpowiadający części centralnego Londynu, będący podstawą do przygotowania danych dla SSN, jak również wykorzystany w eksperymencie DAPPLE (skrzyżowanie Marylebone Road i Gloucester Place, 51.5218N 0.1597W)

Od kilku lat w Centrum Analiz Zagrożeń MANHAZ prowadzone są prace nad algorytmami umożliwiającymi lokalizację źródła skażenia, w oparciu o, pochodzące z sieci detektorów, dane na temat stężeń uwolnionej substancji. Głównym zadaniem istniejących we wszystkich miastach grup reagowania kryzysowego, jest szybkie odpowiadanie na wszelkie zagrożenia dla ludzi i środowiska. Podstawowym czynnikiem decydującym o powodzeniu lub niepowodzeniu danego działania jest czas reakcji.

Obecnie różne substancje chemiczne są używane w większości dziedzin przemysłu, co sprawia, że transport i przechowywanie materiałów toksycznych wiąże się z ciągłym ryzykiem uwolnienia ich do atmosfery i do zajścia skażenia. Dużym wyzwaniem są sytuacje, w których czujniki rozmieszczone na terenie miasta zgłaszają niezerowe stężenie niebezpiecznej substancji, której źródło nie jest znane. W takich przypadkach ważne jest, aby system był w stanie w czasie rzeczywistym oszacować najbardziej prawdopodobną lokalizację źródła zanieczyszczenia, wyłącznie w oparciu o dane o stężeniu, pochodzące z sieci czujników.

Algorytmy, które radzą sobie z zadaniem można podzielić na dwie kategorie. Pierwszą są algorytmy opierające się na podejściu wstecznym, czyli analizie problemu zaczynając od jego ostatniego etapu, ale są one dedykowane obszarom otwartym lub problemowi w skali kontynentalnej. Drugą kategorię stanowią algorytmy, które bazują na próbkowaniu parametrów odpowiedniego modelu dyspersji (parametrów takich, jak lokalizacja źródła), aby wybrać ten, który daje najmniejszą różnicę między danymi wyjściowymi, a rzeczywistymi pomiarami stężeń, wykonywanymi przez sieć detektorów. Podejście to sprowadza się do wykorzystania algorytmów próbkowania, w celu znalezienia optymalnych parametrów modelu dyspersji, na podstawie porównania wyników modelu i detekcji zanieczyszczeń.

Ze względu na efektywność zastosowanego algorytmu skanowania parametrów, każda rekonstrukcja wymaga wielokrotnych uruchomień modelu. Rekonstrukcja w terenie zurbanizowanym, która jest głównym przedmiotem zainteresowania badaczy, wymaga zaawansowanych modeli dyspersji, uwzględniających turbulencje pola wiatru wokół budynków. Najbardziej niezawodne i dokładne są modele obliczeniowej dynamiki płynów (ang. Computational Fluid Dynamics, CFD). Stanowią one jednak bardzo wymagające obliczeniowo wyzwanie. Musimy zdawać sobie sprawę z tego, że aby znaleźć najbardziej prawdopodobne źródło skażenia, model dyspersji trzeba uruchomić dziesiątki tysięcy razy. Oznacza to, że użyty model musi być szybki, aby można go było zastosować w systemie awaryjnym, pracującym w czasie rzeczywistym. Zakładając na przykład, że średni czas potrzebny na wykonanie samych obliczeń modelu dyspersji w terenie zurbanizowanym wynosi 10 minut, pełna rekonstrukcja z jego wykorzystaniem będzie trudna do przeprowadzenia w dopuszczalnie krótkim czasie.

Rozwiązaniem tego problemu, nad którym pracuje dr Anna Wawrzyńczak-Szaban z Centrum Analiz Zagrożeń MANHAZ w NCBJ, przy współpracy z Instytutem Informatyki UPH w Siedlcach, jest wykorzystanie w systemie rekonstrukcji sztucznej sieci neuronowej, zamiast modelu dyspersji, w terenie zurbanizowanym. Chodzi o to, by sztuczna sieć neuronowa była skuteczna w symulacji transportu zanieczyszczeń w powietrzu, na terenie zurbanizowanym. Jeśli to się powiedzie, SSN może działać jako model dyspersji w systemie lokalizującym w czasie rzeczywistym źródło skażenia. Podstawową zaletą SSN jest bardzo krótki czas odpowiedzi – opisuje dr Anna Wawrzyńczak-Szaban. Oczywiście SSN musi być wytrenowana w stałej topologii miasta, przy użyciu rzeczywistych warunków meteorologicznych z wykorzystaniem odpowiedniego i zwalidowanego modelu dyspersji. Proces ten wymaga wielu symulacji, służących jako zestawy danych treningowych dla SSN. Proces uczenia sieci SSN jest kosztowny obliczeniowo, ale po przeszkoleniu, metoda byłaby szybkim narzędziem do szacowania stężeń punktowych dla danego źródła zanieczyszczenia.

W pracy opublikowanej przez naukowców1) przedstawiono wyniki trenowania sieci neuronowej w oparciu o dane, uczące rozprzestrzeniania się toksyn w powietrzu w centrum Londynu, wykorzystując domenę testową eksperymentu polowego DAPPLE2). Dane uczące SSN wygenerowano za pomocą modelu dyspersji Quick Urban & Industrial Complex (QUIC). Przetestowaliśmy różne struktury SSN, czyli liczby jej warstw, neuronów i funkcji aktywacji. Wykonane testy potwierdziły, że wyszkolona SSN może w wystarczającym stopniu symulować turbulentny transport toksyn, unoszących się w powietrzu na obszarze silnie zurbanizowanym – objaśnia dr Anna Wawrzyńczak-Szaban. Ponadto pokazaliśmy, że wykorzystując SSN można skrócić czas odpowiedzi systemu rekonstrukcji. Czas wymagany, przez prezentowaną w pracy SSN, do oszacowania trzydziestominutowych stężeń gazu w 196 000 punktów sensorowych wyniósł 3 s W przypadku modelu QUIC, czas został oszacowany jako co najmniej 300 s, co daje nam 100-krotne przyspieszenie obliczeń. Biorąc to pod uwagę, czas rekonstrukcji w rzeczywistej sytuacji awaryjnej może być krótki, co skutkuje szybką lokalizacją źródła zanieczyszczenia.

W trakcie badań okazało się, że zapewnienie trenowanej SSN pełnej informacji prowadzi czasami do pewnych wyzwań obliczeniowych. Na przykład w pojedynczej symulacji rozproszenia toksyn w powietrzu, na obszarze miejskim, nawet 90% odczytów z czujników może mieć wartość zerową. Prowadzi to do sytuacji, w której postać docelowa SSN obejmuje kilka procent wartości dodatnich i większość zer. W efekcie SSN skupia się na tym, czego jest więcej – na zerach, co sprawia, że nie dostosowuje się do szukanych elementów badanego problemu. Uwzględniając zerową wartość koncentracji w danych treningowych, musimy zmierzyć się z kilkoma pytaniami: jak uwzględnić zero? Jak przeskalować dany przedział, aby „ukryć” zera? Czy w ogóle uwzględniać zera? Czy ograniczyć ich liczbę? – podkreśla dr Wawrzyńczak-Szaban.

toksyny sieci neuronowe