Potężne działo dla Zderzacza Elektron-Jon (EIC) przyspiesza elektrony do 80% prędkości światła

| Astronomia/fizyka
Brookhaven National Laboratory, Flickr, creativecommons.org/licenses/by-nc-nd/2.0/

Naukowcy z Brookhaven National Laboratory zbudowali i przetestowali spolaryzowane działo elektronowe pracujące przy najwyższym napięciu ze wszystkich tego typu urządzeń. Działo jest kluczowym elementem budowanego właśnie Zderzacza Elektron-Jon (EIC). W akceleratorze zderzane będą spolaryzowane elektrony ze spolaryzowanymi protonami i jonami, co pozwoli na badanie podstawowych cegiełek materii.

Brookhaven National Laboratory, Flickr, creativecommons.org/licenses/by-nc-nd/2.0/ Brookhaven National Laboratory, Flickr, creativecommons.org/licenses/by-nc-nd/2.0/

Zadaniem wspomnianego na wstępie działa będzie dostarczanie strumienia cząstek do tunelu akceleratora o długości niemal 4 kilometrów. Przyspiesza ono elektrony od 0 do 80% prędkości światła na przestrzeni zaledwie 5 centymetrów. Oznacza to, że przyspieszenie od 0 do 863,4 milionów km/h następuje w ciągu 2 dziesięciomiliardowych części sekundy. Jednak nie prędkość tu jest najważniejsza, ta zostanie jeszcze zwiększona w tunelu akceleratora. Największym sukcesem jest możliwość wytwarzania w dziale strumieni cząstek o odpowiednich charakterystykach. Działo dostarcza niewielkich ściśle upakowanych pakietów elektronów, których spiny są w większości zwrócone w tym samym kierunku. To ta wielka gęstość upakowania powoduje, że zwiększa się prawdopodobieństwo doprowadzenia do zderzeń elektronów z protonami lub jonami, które w tunelu akceleratora pędzą w przeciwnym kierunku.

Uzyskanie polaryzacji, czy uzgodnienia spinów cząstek, jest niezwykle ważne z punktu widzenia możliwości osiągnięcia celów naukowych akceleratora. Badanie pochodzenia zjawiska spinu to zresztą jeden z nich. Spin jest odpowiedzialny za strukturę i uporządkowanie materii. Wciąż jednak nie wiemy, jak on powstaje.

EIC będzie pierwszym akceleratorem, w którym naukowcy mogą kontrolować spin zarówno elektronów, jak i jonów. To zaś powinno pozwolić na zmapowanie dystrybucji kwarków i gluonów w protonach i jądrach atomowych oraz zbadać strukturę protonu. Dzięki temu naukowcy mają nadzieję lepiej zrozumieć interakcje pomiędzy kwarkami a gluonami. Interakcje te zachodzą za pomocą oddziaływań silnych, które są najpotężniejszymi oddziaływaniami w naturze.

Wysoce spolaryzowany strumień elektronów osiągnięto dzięki fotokatodzie z arsenku galu. Naukowcy ułożyli go w naprzemienne warstwy. To bardzo złożona wielowarstwowa struktura o grubości 100 nanometrów umieszczona na 0,4-milimetrowym podłożu, wyjaśnia fizyk Erdon Wang. Gdy światło lasera o odpowiednich proporcjach trafia w fotokatodę, opuszcza ją strumień elektronów o uzgodnionych spinach i odpowiednich właściwościach.

Podczas testów nowe działo osiągnęło w ciągu 23 godzin napięcie 350 kV i pracowało bez przerwy przez kolejnych 6 miesięcy. Generowało pakiety składające się z 70 miliardów elektronów każdy. Badania jakości pokazały, że tak uzyskane elektrony mają wszystkie właściwości potrzebne do przeprowadzenia zderzeń. W ciągu dwóch lat testów napięcie zawsze było bardzo stabilne. Nasze działo elektronowe charakteryzuje się najwyższym napięciem i największą intensywnością spolaryzowanego strumienia elektronów, cieszy się Wang.

Zderzacz Elektron-Jon powstaje w Brookhaven National Laboratory na bazie istniejącego tam Relativistic Heavy Ion Collider. Głównym elementem konstrukcji EIC będzie dodanie do RHIC dodatkowego pierścienia tak, by urządzenie składało się z dwóch krzyżujących się akceleratorów. W jednym z nich będą krążyły elektrony, w drugim protony lub jony. Koszt budowy nowego akceleratora ma wynieść 1,7–2,8 miliardów dolarów i jest to jedyny akcelerator zderzeniowy, jakiego budowa jest rozważana w USA w ciągu kolejnych 50 lat. W EIC ma dać odpowiedź na pytanie, skąd bierze się spin protonu oraz wyjaśnić właściwości gluonów.

Obecnie bardzo słabo rozumiemy wewnętrzną strukturę protonów. Wiemy, że proton składa się z trzech kwarków połączonych oddziaływaniami silnymi. Jednak, jako że wkraczamy tutaj na pole fizyki kwantowej, pozostaje wiele niepewności. Wewnątrz protonu pojawiają się i znikają pary kwark-antykwark, ważną rolę odgrywają też gluony, łączące wszystko w całość. Jednak pozostaje jeszcze do wyjaśnienia wiele tajemnic. Na przykład trzy kwarki tworzące proton stanowią mniej niż 5% jego masy. Reszta masy pojawia się w jakiś sposób z energii wirtualnych kwarków i gluonów. Nie wiemy też, skąd się bierze spin protonu. Nie jest on prostą sumą spinów trzech kwarków. Znaczenie mają również gluony oraz orbitujące wokół siebie kwarki. Niewiele wiemy o samych gluonach. Zgodnie z niektórymi teoriami, łączą się one w pojedynczą falę kwantową. EIC znacznie bardziej nadaje się do tego typu badań, niż Wielki Zderzacz Hadronów, w którym protony zderzane są z protonami. W EIC wykorzystywane będą znacznie mniejsze od protonów elektrony, co da łatwiejsze do interpretacji wyniki.

W pracach nad EIC biorą udział naukowcy z 8 polskich instytucji: Akademia Górniczo-Hutnicza, Instytut Fizyki Jądrowej PAN, Narodowe Centrum Badań Jądrowych, Politechnika Krakowska, Politechnika Warszawska, Uniwersytet Jagielloński, Uniwersytet Rzeszowski i Uniwersytet Warszawski, które utworzyły Konsorcjum „The Polish Electron-Ion Collider Group". W NCBJ od dawna prowadzone są badania teoretyczne nad oddziaływaniami silnymi, a Polacy należą do światowej czołówki ekspertów w tej dziedzinie. Przed trzema laty fizycy z Zakładu Fizyki Teoretycznej NCBJ – prof. dr hab. Lech Szymanowski, dr hab. Jakub Wagner i dr Paweł Sznajder pomogli stworzyć tzw. żółty raport EIC, w którym opisano oczekiwania dotyczące akceleratora i wskazano, jak należy go budować, by osiągnąć zakładane cele naukowe.

EIC Electron-Ion Collider działo elektronowe Zderzacz Elektron-Jon