LIGO startuje po rocznej przerwie

| Astronomia/fizyka
NSF

Po roku przerwy, w czasie którego był rozbudowywany, wykrywacz fal grawitacyjnych LIGO ponownie rozpoczyna pracę. Dzisiaj, 1 kwietnia, uruchomione zostaną detektory w stanach Waszyngton i Luizjana. Tym razem w pracy będzie je wspierał włoski detektor Virgo, a za kilka miesięcy do współpracy może dołączyć japoński KAGRA.

Naukowcy mają nadzieję, że udoskonalony LIGO ściśle współpracujący z innymi wykrywaczami zarejestruje więcej fal grawitacyjnych i będzie w stanie bardziej precyzyjnie wyśledzić ich pochodzenie. Większość prac ulepszających polegało na zwiększeniu mocy wykorzystywanego lasera. To zwiększyło czułość, mówi profesor Jolien Creighton z University of Wisconsin Milwaukee.

Fale grawitacyjne ściskają i rozciągają przestrzeń o 1 część na 10^21, co oznacza, że cała Ziemia jest ściskana lub rozciągana o 1/100000 nanometra, czyli mniej więcej o grubość jądra atomu. W ramach eksperymentu LIGO zbudowano dwa interferometry ułożone w kształt litery L o długości 4 kilometrów każdy. Na końcach tuneli umieszczono lustra odbijające światło. W stronę luster wystrzeliwany jest promień lasera, który odbija się i powraca do detektorów. Jeśli promienie przebyły drogę o różnej długości, pomiędzy promieniami dojdzie do interferencji. Badając interferencję naukowcy są w stanie zmierzyć relatywną długość obu ramion z dokładnością do 1/10 000 szerokości protonu. To wystarczająca dokładność, by wykryć ewentualne zmiany długości obu ramion interferometrów spowodowane obecnością fal grawitacyjnych. W skład LIGO wchodzą dwa laboratoria - w stanach Luizjana i Waszyngton.

W ramach rozbudowy przybliżono się też do fizycznych granic czułości LIGO, które są wyznaczane przez zasadę nieoznaczoności. Czułość wykrywacza zwiększono „kwantowo ściskając” światło lasera. Dzięki temu długość tuneli można mierzyć z jeszcze większą dokładnością. Dodanie do detektorów z Waszyngtonu i Luizjany urządzeń z Włoch i Japonii pozwoli na bardziej precyzyjną triangulację danych i lepsze określenie źródła pochodzenia sygnału.

Profesor Creighton mówi, że LIGO będzie przyglądał się takim samym źródłom sygnału, co wcześniej: zderzeniom czarnych dziur, gwiazd neutronowych lub kombinacji obu. Uczony jest pewien, że teraz wykrywanych będzie więcej zderzeń czarnych dziur. Mamy też nadzieję, że zobaczymy kolizję układu podwójnego gwiazd neutronowych oraz czarnej dziury, stwierdza. Jednak, jako że dotychczas takiego zjawiska nie zaobserwowano, trudno jest mówić, jak często ono występuje. Jednak po udoskonaleniu LIGO zajrzy jeszcze głębiej w przestrzeń kosmiczną, więc powinniśmy zaobserwować nawet rzadkie wydarzenia, mówi Creighton.

LIGO może też obserwować wybuchy supernowych oraz szybko obracające się samotne gwiazdy neutronowe. Jeśli taki obrót nie jest perfekcyjnie symetryczny, to powinny powstawać fale grawitacyjne, wyjaśnia Creighton. Taki sygnał będzie słaby, ale stały, więc im dłużej LIGO będzie pracował, tym większa szansa na jego zarejestrowanie.

Specjaliści spodziewają się również, że fale grawitacyjne mogą nieść ze sobą niezwykle subtelne echa Wielkiego Wybuchu i mają nadzieję, że uda się je wykryć. Zawsze jest nadzieja, że zobaczymy coś niespodziewanego. I są rzeczy, których nie potrafimy do końca przewidzieć, dodaje Creighton.

LIGO będzie pracował przez rok. Później ponownie zostanie wyłączony i znacząco udoskonalony w ramach projektu ALIGO+.

LIGO fale grawitacyjne rozbudowa Virgo KAGRA czarna dziura gwiazda neutronowa