Niezwykły przepływ elektronów

| Technologia
images-of-elements.com/antimony, CC-BY

Badania naukowe nad nowymi rodzajami materiałów otwierają coraz to nowe perspektywy. Szukamy już nie tylko nanomateriałów, nadprzewodników i stopów z efektem magnetokalorycznym. Prace nad „topologicznym stanem powierzchniowym" obiecują powstanie szybszych układów elektronicznych.

Naukowcy z Uniwersytetu w Princeton w swoich poszukiwaniach nowych rodzajów materiałów zainteresowali się tak zwanymi „izolatorami topologicznymi". Pod tą nazwą kryją się materiały, które będąc w swojej objętości izolatorami, jednocześnie przewodzą prąd na swojej powierzchni. Zjawisko to, związane z tzw. kwantowym efektem Halla, występuje pod wpływem pola magnetycznego. Prace zespołu z Princeton, którym kierował profesor Zahid Hasan wykazały, że efekt „topologicznego stanu powierzchniowego" może występować również bez obecności pola magnetycznego.

Jednym z materiałów „topologicznych" jest pierwiastek antymon. Ekipa prof. Hasana zajęła się zbadaniem jego metalicznej odmiany. Badaniom pod skaningowym mikroskopem tunelowym poddano specjalnie wyhodowane kryształy metalicznego antymonu - dzieło Roberta Cavy z laboratorium chemicznego Uniwersytetu. Wykazały one wyjątkowe właściwości.

Przepływ elektronów na powierzchni normalnych materiałów jest zakłócany przez niedoskonałości jego struktury. W skali mikroskopowej nierówności powierzchni spowalniają na ruch elektronów. Jak się okazuje, kryształy antymonu nie hamują przepływu prądu powierzchniowego mimo nierówności powierzchni. Wygląda to tak, jakby elektrony „omijały" wszystkie przeszkody a nawet przenikały przez nie. Jak mówi Ali Yazdani, fizyk z zespołu badawczego, mikroskopijne bariery na powierzchni tego materiału tworzą szczególny rodzaj fali elektronowej, która najwyraźniej wpływa na wzór przepływu prądu wokół powierzchniowych barier i niedoskonałości.

Praktyczne zastosowanie odkrycia być może pozwoli na tworzenie pewniejszych połączeń elektrycznych w nanoskali i produkcję szybszych układów elektronicznych.

izolatory topologiczne topologiczny stan powierzchniowy antymon kwantowy efekt Halla Zahid Hasan Ali Yazdani Robert Cava Princeton University