Uczeni stworzyli 1. długo działający mechaniczny kubit. Powstaną mechaniczne komputery kwantowe?
Komputery kwantowe mają rozwiązywać problemy, z którymi nie radzą sobie komputery klasyczne. Maszyny, które udało się zbudować, bazują zwykle na superpozycji stanów elektronicznych, na przykład na dwóch różnych ładunkach. Problem w tym, że kubity elektromagnetyczne szybko ulegają dekoherencji, tracą swój stan kwantowy. Wówczas superpozycja ulega zniszczeniu i nie mamy już do czynienia z kubitem. To obecnie znacząco ogranicza możliwości komputerów kwantowych. Wkrótce jednak może się to zmienić, gdyż naukowcy z Federalnego Instytutu Technologii w Zurychu stworzyli długo działający mechaniczny kubit.
Szwajcarski kubit to miniaturowa wersja membrany instrumentu perkusyjnego. Zachowuje się ona w sposób podobny do kota Schrödingera – jednocześnie wibruje i nie wibruje. Jest więc w superpozycji. Wykorzystanie mechanicznego kubitu mogłoby doprowadzić do powstania mechanicznych komputerów kwantowych, zdolnych do przeprowadzania długotrwałych, złożonych obliczeń.
Specjaliści, próbujący stworzyć mechaniczny kubit, mierzyli się z olbrzymim problemem związanym ze stanami energetycznymi. Standardowe kubity elektromagnetyczne zachowują się anharmonicznie, co oznacza, że pomiędzy ich stanami elektronicznymi istnienie nierównowaga energii i to właśnie czyni je użytecznymi kubitami. Z mechanicznymi rezonatorami, takimi jak wspomniana powyżej membrana, problem polega na tym, że są one harmoniczne. Poziomy energii pomiędzy wibracjami są równe, więc wykorzystanie ich jako kubitów jest niemożliwe. Zaproponowano więc rozwiązanie problemu, które miało polegać na połączeniu takiego mechanicznego oscylatora z najlepiej działającym elektromagnetycznym kubitem. Jednak czas działania takiej hybrydy uzależniony był od czasu dekoherencji kubita elektromagnetycznego. Całość nie sprawdzała się dobrze.
Naukowcy z Zurychu wpadli więc na inny pomysł. Ich kubit składa się z elementu piezoelektrycznego umieszczonego na szafirowej płytce – to część mechaniczna – połączonego z szafirowym anharmonicznym elementem.
Prototypowy układ osiąga czas koherencji rzędu 200 mikrosekund, działa więc 2-krotnie dłużej niż przeciętny kubit nadprzewodzący. Co prawda obecnie najlepsze kubity osiągają czas koherencji około 1 milisekundy, jest to więc około 5-krotnie dłużej niż mechaniczny kubit z Zurychu, ale mowa tutaj o wyjątkowych kubitach, nad którymi prace trwają od wielu lat.
Szwajcarscy naukowcy zapewniają, że eksperymentując z różnymi materiałami i architekturami będą w stanie znacząco wydłużyć czas koherencji ich kubitu.
Twórcy mechanicznego kubitu pracują teraz nad stworzeniem kwantowej bramki logicznej, odpowiednika bramek logicznych w tradycyjnych komputerach, za pomocą których przeprowadzane są obliczenia.
Komentarze (66)
Jarek Duda, 19 listopada 2024, 08:36
Artykuł: https://www.science.org/doi/10.1126/science.adr2464
Diagram poniżej z https://phys.org/news/2024-11-physicists-fully-mechanical-qubit.html
Najbardziej interesuje mnie preparacja stanu: "the current sloshing in the superconducting qubit would excite vibrations in the mechanical oscillator." - czyli jeśli dobrze rozumiem, impulsem mikrofalowym sprzęgają mechaniczny rezonator z nadprzewodzącym qubitem, wymuszając jego wartość - jeśli tak, to dlaczego wolno tylko na początku obliczeń, a nie też na końcu dla 2WQC ( https://www.qaif.org/2wqc )?
peceed, 21 listopada 2024, 20:27
Bo wbrew temu co się koledze wydaje (najpewniej przez zabawy z modelami Isinga) obliczenia kwantowe zajmują czas.
To oznacza, że odczytanie wyniku jest po tym jak ustawi się wejście.
Co śmieszniejsze, wynik da się jedynie odczytać a nie ustawić, i to odczyt wyniku definiuje koniec obliczeń kwantowych.
Zasada działania komputera kwantowego nie zależy od detali realizacji, więc nie można się spodziewać że jakieś nowe podejście coś zmieni w tej materii.
Jarek Duda, 21 listopada 2024, 21:53
Ale tutaj impulsem ustawiamy stan takiego mechanicznego kubitu - zwykle przed obliczeniami ... to co by się stało gdybyśmy to jednak zrobili po? Skolapsowałoby do czarnej dziury czy co?
Ten ostatni ( https://link.springer.com/article/10.1140/epja/s10050-023-01006-7 ):
peceed, 21 listopada 2024, 22:02
Nic by się nie stało... Ustawia kolega bity, przeprowadza obliczenia, odczytuje wynik i potem "ustawia" bity na wyjściu kasując wynik.
Natomiast ustawienie wyniku przed rozpoczęciem (albo końcem) obliczeń powoduje, że kończymy obliczenia kwantowe bo ostatnie bramki które przeprowadzają obliczenia zamiast qbitów napotkają bity, niczym się to nie różni od przedwczesnej dekoherencji komputera kwantowego.
"Ustawianie wyjścia" to dekoherencja i koniec obliczeń kwantowych.
Prościej się chyba nie da tego opisać.
Jarek Duda, 22 listopada 2024, 03:59
Ale w komputerach kwantowych mamy unitarną ewolucję - symetryczną w czasie ... to skąd ma ona wiedzieć czy ustawiliśmy wartość przed czy po?
ex nihilo, 22 listopada 2024, 06:34
Kiedy to, w różnych wariantach, od lat już >10 czytam, jakoś tak - nie wiem czy słusznie - przypomina mi się historia mojego prawujka, który cały majątek stracił na konstrukcję perpetuum mobile. Ale że coś tam podobno "po drodze" wynalazł, to... i tak lepiej na tym wyszedł, niż gdyby wszystko w karty przegrał.
PS
Jaki czas dajesz - jakieś attosekundy, czy może godzinę albo tydzień?
Jarek Duda, 22 listopada 2024, 07:26
Perpetuum mobile łamie m.in. zasadę zachowania energii, a co łamie wymuszenie stanu tuż po unitarnej ewolucji komputera kwantowego, zamiast symetrycznie tuż przed?
Obliczenia ustawiające warunki brzegowe symetrycznie z obu stron unitarnej ewolucji to absolutny standard np. przy liczeniu macierzy rozpraszania: https://en.wikipedia.org/wiki/S-matrix#Interaction_picture
ex nihilo, 22 listopada 2024, 09:08
Pm II rodz. w warunkach idealnych - wyizolowane z otoczenia, brak tarcia itd. - niczego nie łamie, a nawet Pm I rodz. może zadziałać w granicach nieoznaczoności t/E.
Podobnie z tym wymuszeniem stanu - jeśli zdążysz zanim gilotyna ostatecznie łeb odetnie, to może się uda . No i nie masz możliwości całkowitego odizolowania swoich stanów i trajektorii między nimi od otoczenia. Czyli może się da to zrobić w interwale przestrzenno-czasowym całkiem bardzo cholernie bliskim 0.
Tak, bo trzeba znaleźć trajektorie, których stany początkowe i końcowe będą spełniały te same prawa zachowania, ale to nie oznacza, że w realnym doświadczeniu startując ze stanu końcowego dostaniesz stan początkowy z takim samym pdp - no chyba że w świecie blokowym (chociaż i tu może istnieć zakaz) albo przy użyciu ~nieskończonej energii.
Teoretyczna możliwość, którą daje np. unitarna symetria, nie jest równoznaczna z praktyczną wykonalnością.
No ale jestem tylko kibicem (chociaż czasem kibolem ).
Jarek Duda, 22 listopada 2024, 09:38
To jest próba odtworzenia/zrozumienia co np. w takim zderzeniu się działo, używając najskuteczniejszej dzisiaj fizyki jak zespoły Feynmanowskie dla zadanych warunków brzegowych.
Skoro wierzymy że tak działa fizyka, dlaczego nie użyć tego do obliczeń - np. znane impulsy EM do wymuszenia stanów z jednej strony, odwrócone V(t) -> V(-t) z drugiej - tak żeby fizyka, działająca zespołami Feynmanowskimi między takimi warunkami brzegowymi, rozwiązywała podany problem obliczeniowy?
peceed, 22 listopada 2024, 11:01
Nie interesuje mnie na przykład o czym myślą trójkąty, więc podobnie nie interesuje mnie co sądzi i co wie unitarna ewolucja. Z takimi pytaniami to raczej nie do fizyków
Ważne jest to, że ta pożądana ewolucja unitarna znika gdy ustawi się bity wyjścia. Przypuszczam że po dojściu obliczeń do tego miejsca ostatnia bramka logiczna wykona wtedy pomiar na pozostałych bitach swojego wejścia, może nawet dając jakąś ciekawą warunkową statystykę.
Unitarna ewolucja wciąż przebiega w czasie który jest zgodny z czasem obserwatora (czyli w praktyce z całym klasycznym otoczeniem).
Bo fizyka raczej tego nie wie?
Już to poruszaliśmy. Związki przyczynowo-skutkowe.
Takie ustawianie wyjścia jest równoważne postselekcji która umożliwia FTL.
(Szczęśliwie nie da się tego zrobić).
Było kilka postów wcześniej - zapomniał kolega czy nie zrozumiał?
Obawiam się że fizyka wystaje trochę poza ten układ w przeszłość, przyszłość i na boki.
Jarek Duda, 22 listopada 2024, 11:38
Jednak CPT symetrycznej fizyce narzucasz łamanie zgodnie ze swoją intuicją ... pycha pewności wyższości własnych intuicji nad działające modele fizyki.
W komputerach kwantowych skupiamy się na unitarnej - czasowo symetrycznej fizyce, też walcząc z łamaniem tej symetrii dla warunków brzegowych - jak transportowanie atomów z rezerwuarów o kosmicznie małych temperaturach, impulsami EM które nie problem odwrócić.
Z jednej strony w QM jest pełno zjawisk naiwnie superluminal, retrocausal - jak EPR, Wheeler, delayed choice ... jednak nie pozwalają przesyłać informacji.
Z drugiej, maintreamowa fizyka teoretycznie pozwala na takie konstrukcje - jak zamiana czasu i przestrzeni pod horyzontem czarnej dziury, wormhole, rozwiązania tachionowe ... znowu próbujesz narzucić fizyce swoje intuicje, gdy działająca fizyka teoretycznie pozwala na konstrukcje sprzeczne z Twą nieomylnością.
peceed, 22 listopada 2024, 12:42
To kolega ma problem ze swoją intuicją a nie ja - bo modele fizyki nie dają prawa do łamania zasad fizyki "na życzenie".
Ja to akceptuję, kolega nie.
Brak zainteresowania pomysłami kolegi oznacza, że inni fizycy też nie są zainteresowani łamaniem zasad fizyki w działających urządzeniach.
Zakaz FTL jest mocnym fundamentem na którym opiera się fizyka.
Komputer kolegi pozwala przesyłać informację FTL w wersji hard.
Tylko według OTW. Współczesne zrozumienie jest takie, że czarne dziury są obiektami w pełni kwantowo-mechanicznymi. Tzn. nie tylko bardzo "małe" obiekty muszą być opisywane przez mechanikę kwantową, ale też "ekstremalne". Wnętrze czarnych dziur jest po prostu puste (za wyjątkiem momentu tworzenia), w teorii strun CD jest makroskopowym kłębkiem strun zlokalizowanym wokół powierzchni CD, a bardziej "klasyczna" intuicja jest taka, że jakakolwiek masa zawarta w środku generuje gigantyczne promieniowanie Unruh/Hawkinga transportujące energię/masę w stronę "skórki". Osobliwość w środku nie istnieje.
Czyli fizyczne CD są bardziej Gravastarami.
Jak już przerabialiśmy, jeśli chodzi o trawersowalne - nie bardzo, .
Też nie pozwalają na FTL.
No cóż, chciałem pomóc. Nie lubię tego argumentu, ale nie jestem sam - stoi za mną pewnie ze 99% fizyków teoretycznych.
Pobawię się w przepowiadanie przyszłości: nikt poważny (możemy to różnie rozumieć) nie zainteresuje się pomysłami kolegi, na 90% nie uda się koledze przeprowadzić doświadczenia i na 100% nie uzyska się obliczeń 2WQC.
Skoro nie załapał kolega fizyki przez ostatnie 20 lat, to zabawa może jeszcze potrwać co najmniej drugie tyle, bo tłumaczenie krok po kroku dlaczego wyobrażenia kolegi nie odpowiadają naszej rzeczywistości po prostu nie działa.
Nie ma żadnego "my" - są ludzie tworzący różnego typu komputery kwantowe i jest kolega ze swoimi fantasmagoriami, wynikającymi z zadziwiającego niezrozumienia fizyki.
W sumie to komiczne - zamiast wykorzystać talent do tworzenia nowych algorytmów kwantowych - co jest trudne, wymyśla sobie kolega nie istniejące komputery które będą rozwiązywać problemy bardzo łatwo.
Ucieczka do przodu
Jarek Duda, 22 listopada 2024, 13:30
Proszę wskaż mi dowód oparty na mainstreamowych podstawowych modelach fizyki: QFT modelu standardowego + ogólna teoria względności.
To wyobraźmy sobie że ktoś odważny, mimo ryzyka kolapsu Fizyki Wg Nieomylnego Peceeda, jednak na końcu obliczeń na silicon quantum dots zastosuje odwrócony impuls użyty do preparacji stanów - proszę rozwiń co by się zawaliło, jak mógłby przesłać informację FTL takim zimnymi elektronami poruszającymi się pewnie z milimetry na sekundę?
peceed, 22 listopada 2024, 16:06
I znowu wychodzi matematyk z butów, pomimo dyplomu fizyka
W fizyce nie postulujemy aksjomatów i na ich podstawie dowodzimy prawd o świecie, tylko szukamy aksjomatów wyjaśniających działanie świata, kluczem jest synteza faktów.
Język kolegę zwodzi niemiłosiernie.
"Koniec obliczeń kwantowych" to pomiar bitów na qbitach wyjścia. Z p******* definicji.
Więc jak kolega sobie coś ustawi na wyjściu po zakończeniu obliczeń, to dostanie to na wyjściu.
Jak sobie ustawi przed końcem obliczeń, to dokona pomiaru co będzie skutkowało dekoherencją i przerwaniem obliczeń kwantowych.
Tak, ustawienie bitu jest jego pomiarem.
Zatem żaden setup na biurku nie zrobi tego co postuluje kolega i nie uzyska FTL.
Link do dowodu jak postselekcja pozwala tworzyć nadświetlne kanały komunikacyjne już chyba podałem.
Jarek Duda, 22 listopada 2024, 16:23
Model standardowy + OTW skutecznie opisują przyjmuje się że prawie całą fizykę - jeśli z tego nie wywnioskujesz, to mówisz tylko o jakich swoich widzimisiach które nie wiem skąd wiązłeś? Może we śnie się objawiły?
Owszem całkowicie się zgadzam się że nie da się zrobić praktycznego FTL na 2WQC silicon quatum dots - co dopiero zarzucałeś.
Pozdrawiam
Astro, 22 listopada 2024, 16:48
O ile dobrze rozumiem, to "z perspektywy CPT" musiałyby być to pozytony, nie elektrony...
Jarek Duda, 22 listopada 2024, 17:02
Używam CPT ponieważ tylko dla niej mamy pewność, ale pracując tylko na EM jak tu, można użyć czasową.
Ale jeśli można zrealizować |0> pozytronami, dlaczego nie da się elektronami?
Astro, 22 listopada 2024, 17:11
CPT pozwala zastąpić <0| elektronu jedynie |0> pozytonu. A czemu nie da się elektronami? No ja wciąż w naszym Wszechświecie się starzeję, a nie młodnieję...
peceed, 22 listopada 2024, 17:11
Stary argument nie zniechęcił Jarka
1. Nie, ja twierdzę że gdyby dało się zrobić to co chce zrobić kolega, czyli uzyskać postselekcję (nawet w jakiejś słabej statystycznej wersji), to by uzyskał FTL.
2. Szczęśliwie nie da się tego zrobić na żadnym układzie fizycznym.
Ale ja się zgadzam, że jak się da pozytronami, to da się i elektronami!
Tylko że dodatkowo uważam, że nie da się elektronami
W sumie to jakieś wyparcie rzeczywistości, bo skutkowałoby wyrzuceniem do kosza kilku lat "badań".
Rozumiem.
Taki jest niestety ciężki los fizyka. W matematyce prawie się nie zdarza.
Jarek Duda, 22 listopada 2024, 20:44
Jeszcze raz, bardzo proszę wytłumacz jak zrealizowałbyś praktyczne FTL na np. superconducting czy silicon quantum dots QC w którym dodajemy odwrócone impulsy EM preparacji stanu? Szczerze myślałem nad tym, ale nie widzę absolutnie żadnych szans - proszę oświeć nas.
Też chciałbym zrozumieć dlaczego uważasz że fizyka zabrania takie rzeczy? Nie podałeś żadnego argument. Formalizm lagrażnowski nie widzi problemu, do tego daje wiele możliwości konstrukcji - trudnych do realizacji, ale teoretycznie dozwolonych ...
Tylko rzucasz losowe puste hasła ala Kaku, zero referencji, matematyki, refleksji ... sory ale z książek popularnonaukowych nie nauczysz się fizyki. Skoro takie rzeczy interesują, polecam formalną mainstreamową edukację.
peceed, 22 listopada 2024, 21:09
Nie zrealizowałbym. Dodatkowo nie rozumiem jaki jest fizyczny sens sformułowania "odwrócone impulsy EM".
Wiem jak można generować normalne impulsy EM, ale odwrócone - nie bardzo (choć zakładam że chodzi koledze o tę magiczną symetrię (CP)T ...
Niestety nigdy kolega nie wyjaśnił jaki układ fizyczny generuje taki impuls. Choć było kilka nonsensów, jak utożsamianie kierunków fizycznych z wymiarem czasowym, ale przyjmijmy że się pomyliłem - piłeczka wraca na stronę kolegi. Możemy się zatem skupić na tym zagadnieniu - generowanie odwróconych impulsów.
To koledze brakuje refleksji i fizyki.
Nie muszę, całkiem dobrze nauczyłem się na WFiTJ. A prawidłową "ontologię" mechaniki kwantowej zrozumiałem w wieku 33 lat. Co nie jest rewelacyjnym wyczynem, ale większość fizyków nie robi tego wcale, a zawodowo byłem informatykiem.
Jarek Duda, 23 listopada 2024, 04:18
Po raz kolejny, mając w sterowniku QC kształt impulsu V(t), dodać w tym sterowniku impuls o odwróconym kształcie V(-t) (lub -V(-t)), dzięki temu z perspektywy CPT staje się on oryginalnym impulsem V(t) preparacji stanu.
Osoba po AGH nie miałaby problemu ze zrozumieniem tego, używałaby matematycznych argumentów i referencji - czego nie robisz. Zamiast tego widzę długie luźne ciągi myśli - sugerujące background humanistyczny uzupełniany literaturą popularnonaukową.
Też kolejny raz pytam się dlaczego uważasz że fizyka zabrania superluminal i retrocausal, szczególnie że są w sercu QM (np. EPR, Wheeler, delayed choice) i działające teorie pola teoretycznie pozwalają na łamiące konstrukcje (np. pod horyzontem czarnej dziury cząstki poruszają się FTL, wykrzywiając czasoprzestrzeń że połączą się 2 punkty powstanie wormhole), ale nie potrafisz napisać nic konkretnego dla uzasadnienia swojej intuicji/założenia.
peceed, 23 listopada 2024, 09:27
Aby mówić o perspektywie CPT, musi kolega przeanalizować co taki impuls zrobi w układzie z naszej perspektywy, i potem można opisać to w czasie wstecz.
To jedyny działający sposób.
Inaczej przyjmuje niefizyczny stan końcowy jako swój początkowy w CPT.
To jakiś dowcip? Jeśli sterownik wysyła impuls
/\___________
_____/\______
___________/\
To nie da się uzyskać w sterowniku impulsu:
___________/\
_____/\______
/\___________
Dokładnie z tego samego powodu dla którego mój telewizor nie jest w stanie czegokolwiek wysłać do nadajnika.
Albo nadajnik wyssać z telewizora - nawet język ma problemy.
Nie ma takiej opcji. W żadnym układzie.
("kreska" powyżej jest przestrzenią pomiędzy sterownikiem a q-bitem, i może mieć 3 wymiary - niczego to nie zmienia)
To jest FTL już na wstępie do rozumowania.
Garbage In Garbage Out
Używałaby argumentów fizycznych, a tych brakuje koledze.
Ja nie mam problemów ze zrozumieniem dlaczego "pomysły" kolegi nie mają sensu, problemem jest "zdebugowanie" rozumowania kolegi,
analogicznie do faktu że znacznie łatwiej jest podać kontrprzykład niż znaleźć lukę w dowodzie. A debugowanie jest ekstremalnie trudne bo brakuje sensownej informacji zwrotnej. Na szczęście udało się teraz dojść z tym do końca (dla kolegi - CPT(początku)).
Z mojego punktu widzenia - osoby po AGH - jest zadziwiające, że wydział fizyki UJ wypuścił taki produkt.
Zasadniczo byłem "cudownym dzieckiem" bez ograniczeń na dyscypliny, i pewnie życiowo lepiej by mi poszło gdybym został muzykiem lub pisarzem.
To nie jest żadne "serce QM". To są przykłady błędnych rozumowań klasycznych stojących w sprzeczności z mechaniką mechaniką kwantową - takie esencje ludzkich problemów.
Używając humanistycznej nomenklatury - komediodramaty.
Łatwo je zidentyfikować po tym, że jako koncepcje mogą zniknąć z historii fizyki bez żadnego uszczerbku na rozumieniu czegokolwiek, a dla wielu ludzi - z pożytkiem.
To nie przypadek że kolega się ciągle do nich odwołuje.
Założeń fizycznych nie trzeba uzasadniać inaczej niż przez zgodność z doświadczeniem.
Nie czuję wielkiej potrzeby uzasadniania moich poglądów bo są całkowicie "mainstreamowe".
Jeśli kolega uważa że "fizyka dopuszcza", to niech mówi o tym głośno i wyraźnie. Najlepiej też dopisze w stopce mailowej.
Jarek Duda, 23 listopada 2024, 09:45
Podałem przykład silicon quantum dots, gdzie dla preparacji stanu przy pozycyjnych qubitach, robimy po prostu impuls pola elektrycznego - zastosować na końcu odwrócony impuls i z perspektywy CPT staje się oryginalną preparacją stanu.
Dla bardziej skomplikowanych preparacji stanów np. superconducting QC, sterownik nakazuje ciąg impulsów - czyli ma zadaną funkcję kształtu np. V(t) do zastosowania na elektrodach, cewkach ... dodać mu na końcu impulsy zadane odwróconą funkcją kształtu V(-t) i z perspektywy CPT wykonaliśmy oryginalną preparację stanów.
To są Twoje założenia - czy masz jakikolwiek argument że fizyka się nimi przejmuje?
Był taki dowcip że matematyk jest bardzo tani bo potrzebuje tylko kartek i kosza na śmieci, a filozof jeszcze tańszy bo nie potrzebuje kosza na śmieci ... sory ale fizyka nie przejmuje się widzimisiem filozofów - bez argumentów objawione Tobie założenia nie są wiele warte, chcesz robić fizykę to skończ chociaż licencjat w tej dziedzinie.