Kwantowa supremacja: chiński GBS liczy 100 000 000 000 000 razy szybciej niż chiński superkomputer
Chińscy naukowcy donieśli, że układ optyczny przeprowadził kwantowe obliczenia zwane gaussowskim próbkowaniem bozonu (Gaussian boson sampling – GBS) ok. 100 bilionów razy szybciej niż mogą to zrobić klasyczne superkomputery. Osiągnięciem takim pochwalili się na łamach Science Jian-Wei Pan i Chao-Yang Lu oraz ich koledzy z Chińskiego Uniwersytetu Nauki i Technologii w Hefei.
Co prawda metoda GBS powstała po to, by wykazać, że komputery kwantowe mogą osiągnąć kwantową supremację – czyli wykonać obliczenia, jakich komputery klasyczne nie są w stanie wykonać w rozsądnym czasie – ale można ją przystosować do niektórych wyspecjalizowanych praktycznych obliczeń.
Żeby zrozumieć, na czym polega próbkowanie bozonów, wyobraźmy sobie układ optyczny z wieloma wejściami i wyjściami. Do układu wpuszczamy pojedyncze fotony, które napotykają na różne komponenty optyczne, jak dzielniki wiązki czy lustra. Zadaniem metody próbkowania bozonów jest odgadnięcie, jak fotony pojawią się na wyjściu. Taki układ możemy więc postrzegać jako matrycę dokonującą transformacji konfiguracji fotonów wpuszczonych na wejściu w konfigurację wyjściową. Określenie konfiguracji wyjściowej jest bardzo trudne nawet dla niewielkiej matrycy z rozdzielaczy i lusterek.
Układ optyczny, który wykorzystali Chińczycy, ma 100 punktów wejścia i 100 punktów wyjścia i składa się z losowo rozłożonych 300 rozdzielaczy wiązki i 75 lusterek. Wszystkie elementy były ze sobą nawzajem połączone, więc foton, który wszedł w dowolnym punkcie wejścia mógł pojawić się dowolnym punkcie wyjścia.
Chińczycy poinformowali, że GBS wykonała odpowiednie obliczenia w ciągu około 200 sekund. Tymczasem najszybszy chiński superkomputer – Sunway TaihuLight – który jest 4. najpotężniejszym superkomputerem na świecie, potrzebowałby na wykonanie tych samych obliczeń... ok. 2,5 miliarda lat.
Ten eksperyment to z pewnością kamień milowy w dziedzinie symulacji kwantowych opartych na liniowych układach optycznych, mówi Christine Silberhorn z niemieckiego Uniwersytetu w Paderborn. Silberhorn jest jednym z twórców zaproponowanej w 2017 roku metody GBS. Uczona dodała, że samo przygotowanie systemu o rozmiarach 100x100 musiało być bardzo trudne. Z jej opinią zgadza się Ian Walmsley z Imperial College London, który dodatkowo chwali chińskich naukowców za heroiczny wyczyn, jakim było przygotowanie stanów kwantowych, które są całkowicie nierozróżnialne i upewnienie się, że fotony nie zostały utracone.
Chao-Yang Lu mówi, że wraz z kolegami na tyle ulepszyli GBS, że możliwe będzie przeprowadzenie eksperymentu na macierzy 144x144. W 2021 roku nasza maszyna GBS będzie łatwiejsza w dostrojeniu, mniejsza i bardziej stabilna. Zaczynamy zastanawiać się nad jej wdrożeniem do celów praktycznych.
Komentarze (3)
mcezar, 4 grudnia 2020, 14:19
Czyli... problem optyczny został "rozwiązany" przez "komputer" optyczny? To nie jest trochę tak, jakby teoretyczny problem "oblicz, kiedy kamień spadnie na ziemię" rozwiązać metodą rzucenia kamienia na ziemię?
ZTNW, 9 grudnia 2020, 18:46
Jak zrobią uniwersalne komputery kwantowe połączone kwantowym internetem-(czyli coś co nazwę"Rytm-"),o będzie rewolucja a nie ten chiński BBS,wyobrażcie to sobie gdyby udalo się stworzyć "Rytm" to mozliwości do jego wykorzystania byłyby nieograniczone-w grach,nauce,militarnie itd.,jedynie ograniczała by nas ilość dostępnej energii.
radar, 10 grudnia 2020, 00:56
Uniwersalne komputery klasyczne też zaczynały od ENIACA (czy tam może nawet wcześniej)