Naukowcy z Wrocławia udoskonalili laserowe pomiary odległości do Księżyca i satelitów

| Technologia
Uniwersytet Przyrodniczy we Wrocławiu

Najnowsze odkrycie naukowców z Uniwersytetu Przyrodniczego we Wrocławiu dowodzi, że dotychczasowe podejście do korygowania błędów wynikających z opóźnienia wiązki laserowej w atmosferze było wadliwe.  Dlatego proponują zupełnie nowe rozwiązanie, dzięki któremu obserwacje m.in.: kształtu Ziemi, topniejących lodowców oraz zmian poziomu wód oceanicznych będą dokładniejsze.

Pomiary laserowe opierają się na rejestracji różnicy czasu pomiędzy momentem wysłania impulsu laserowego na stacji a momentem powrotu tego samego impulsu po tym, gdy zostanie on odbity przez retroreflektor na satelicie lub Księżycu. Podczas pomiaru wiązka laserowa przechodzi dwukrotnie przez atmosferę ziemską, gdzie ulega ugięciu i opóźnieniu. Technologia detektorów laserowych pozwala na uzyskanie dokładności sub-milimerowych. Jednakże błędy wyznaczenia opóźnienia wiązki laserowej w atmosferze są wielokrotnie większe i stanowią główne źródło błędów w pomiarach laserowych do satelitów i Księżyca.

Na czym polega nowatorstwo rozwiązania Polaków?

Naukowcy z Instytutu Geodezji i Geoinformatyki Uniwersytetu Przyrodniczego we Wrocławiu zaproponowali zupełnie nowe i innowacyjne podejście do korygowania opóźnienia wiązki laserowej w atmosferze. Podejście opiera się na uwzględnieniu grubości warstw atmosfery, przez które przechodzi laser. Do wyznaczenia wartości opóźnienia lasera wykorzystuje się odczyty meteorologiczne na stacji, do których wyliczana jest poprawka zależna od wysokości satelity nad horyzontem oraz od początkowej wartości opóźnienia wiązki lasera. W zaproponowanej metodzie analizuje się wszystkie pomierzone odległości na wszystkich stacjach i wylicza się dla każdej stacji poprawki, które są wprost proporcjonalne do opóźnienia wiązki lasera wynikającego z bezpośrednich pomiarów meteorologicznych i grubości atmosfery, którą musi pokonać laser. Poprawkę meteorologiczną wystarczy wyliczać raz na tydzień dla każdej stacji laserowej, dzięki czemu obliczenia pozostają stabilne nawet dla stacji z niewielką liczbą zarejestrowanych pomiarów laserowych do satelitów, a zarazem błąd wynikający z opóźnienia atmosferycznego zostaje prawie całkowicie usunięty. Metoda opracowana przez polski zespół pozwala na skuteczną eliminację od 75 do 90% błędów systematycznych w pomiarach laserowych wynikających z błędów opóźnienia atmosferycznego.

Sposób redukcji błędów meteorologicznych już niedługo ma szansę stać się standardem w laserowych pomiarach odległości do satelitów zwiększając dokładność nawet historycznych obserwacji Księżyca i satelitów, dzięki swojej prostocie i uniwersalności. Pozwala również na wykrycie błędnych odczytów z barometrów, które wcześniej negatywnie wpływały na satelitarne obserwacje Ziemi i Księżyca. Przełoży się to na poprawę przyszłych oraz wcześniejszych obserwacji kształtu Ziemi, tzw. geoidy, zmiany centrum masy Ziemi i obserwacji nieregularności w ruchu obrotowym, obserwacji topniejących lodowców oraz zmian poziomu wód oceanicznych.

Po co mierzymy odległości do satelitów?

Dzięki pomiarom laserowym do sztucznych i naturalnego satelity Ziemi dowiedzieliśmy się, ile wynosi stała grawitacji i masa Ziemi, o ile zmienia się spłaszczenie Ziemi w czasie, możemy korygować i wyliczać poprawki pozycji satelitów Galileo i GLONASS oraz zidentyfikowaliśmy, gdzie znajduje się środek masy Ziemi i jak przemieszcza się w czasie za sprawą topniejących lodowców na Grenlandii. Pomiary laserowe do Księżyca pozwoliły odkryć, że Księżyc oddala się od Ziemi o 3,8 cm rocznie. Ponadto pozwoliły na dokładny opis wahań w ruchu Księżyca, czyli tzw. libracji oraz zrewidować pochodzenie srebrnego globu.

Wrocławskie centrum obliczeniowe pomiarów laserowych

Grupa badawcza kierowana przez profesora Krzysztofa Sośnicę od wielu lat zajmuje się rozwojem technik laserowych i mikrofalowych w geodezji satelitarnej, a także wyznaczaniem precyzyjnych orbit sztucznych satelitów i parametrów opisujących Ziemię. W Instytucie Geodezji i Geoinformatyki Uniwersytetu Przyrodniczego we Wrocławiu od 2017 roku funkcjonuje Stowarzyszone Centrum Analiz Międzynarodowej Służby Pomiarów Laserowych do Sztucznych Satelitów i Księżyca (ang. International Laser Ranging Service, ILRS). Centrum odpowiada za monitorowanie jakości orbit satelitów Globalnych Nawigacyjnych Systemów Satelitarnych (GNSS): Galileo, GLONASS, BeiDou i QZSS z wykorzystaniem orbit opartych o obserwacje mikrofalowe i bezpośrednie pomiary laserowe. Jako jedyne na świecie, wrocławskie centrum specjalizuje się w kombinacji dwóch technik obserwacyjnych sztucznych satelitów: laserowej i mikrofalowej GNSS. 

laser pomiar odległości satelita Wrocław