Imponujące osiągnięcie Austriaków. Zmierzyli oddziaływanie grawitacyjne obieku o masie pszczoły
Grawitacja to jedna z tych sił, których oddziaływanie odczuwamy bez przerwy. Należy jednocześnie do najsłabiej rozumianych zjawisk fizycznych. To najsłabsze z oddziaływań podstawowych jest jedną z przyczyn, dla których nie potrafimy zunifikować ogólnej teorii względności z mechaniką kwantową. Jej szczegółowe poznanie jest jednym z najważniejszych wyzwań stojących przed współczesną fizyką. Dlatego tez niezwykle ważna jest możliwość testowania grawitacji we wszystkich możliwych skalach.
Dotychczas tego typu eksperymenty prowadzono w skalach makroskopowych, wykorzystując obiekty o masach liczonych w kilogramach. Naukowcy z Instytut Optyki i Informacji Kwantowej Austriackiej Akademii Nauk oraz Wydziału Fizyki Uniwersytetu Wiedeńskiego poinformowali właśnie na łamach Nature o wykryciu oddziaływania grawitacyjnego pomiędzy dwiema złotymi sferami o średnicy 2 milimetrów każda. Masa każdej ze sfer była mniejsza niż 100 miligramów.
Autorzy eksperymentu wykorzystali dość standardowe urządzenie. Powtórzyli bowiem eksperyment Cavendisha. Użyli wagi skrętnej zbudowanej ze szklanego pręcika długości 4 cm i średnicy 0,5 mm. Na obu jego końcach umieszczono wspomniane złote sfery. Pręcik był zawieszony na środku na cienkim włóknie szklanym umożliwiającym mu swobodny obrót. Przy mocowaniu umieszczono lustro, które odbijało światło lasera. Centrum masy stanowiła złota sfera o średnicy 2 milimetrów i wadze 90 mikrogramów. Do sfery tej zbliżano sfery przymocowane do pręcika, licząc na to, że sfera będzie je przyciągała, co spowoduje obrót lustra. To z kolei zmieni miejsce, w którym po odbiciu trafi światło lasera. Taka architektura pozwoliła na prowadzenie niezwykle precyzyjnych pomiarów.
Problem stanowią jednak zewnętrzne zakłócenia, które trzeba jakoś zniwelować. A nie jest to łatwe. Dość wspomnieć, że ludzie i tramwaje przemieszczający się w pobliżu laboratorium byli źródłem poważnych zakłóceń sejsmicznych. Żeby je zminimalizować eksperymenty były prowadzone nocą w czasie świąt Bożego Narodzenia. Urządzenie badawcze umieszczono na gumowej podstawie w komorze próżniowej, którą najpierw wypełniono zjonizowanym azotem, by wyeliminować wszelkie ładunki elektryczne. Na wszelki wypadek pomiędzy sferami umieszczono klatkę Faradaya, by wykluczyć ryzyko, że będą one przyciągały się za pomocą oddziaływań elektrostatycznych.
Mimo tego, że wszelkie zakłócenia starano się utrzymać na możliwie najniższym poziomie, naukowcy wiedzieli, że oddziaływanie pomiędzy tak lekkimi sferami również będzie niewielkie. Dlatego też, zamiast próbować zmierzyć, na ile się one przyciągają, naukowcy poruszali sferami według regularnego wzorca, jednak częstotliwość ruchów dobrano tak, by była całkowicie różna od naturalnego rezonansu. To spowodowało pojawienie się zmiennego w czasie pola grawitacyjnego i oscylacje wagi, wyjaśnia Jeremias Pfaff.
Podczas eksperymentu sfery były zbliżane do siebie na odległość od 2,5 do 5,8 milimetra. Naukowcy stwierdzili, że ich system jest w stanie zarejestrować przyspieszenie rzędu 2x10-11 m/s2. Siłę oddziaływania pomiędzy sferami wyliczono zaś na 9x10-14 niutona.
Zmierzenie tak miniaturowych sił to imponujące osiągnięcie technologiczne. Jednak autorzy eksperymentu twierdzą, że w kolejnych etapach swoich badań będą w stanie mierzyć oddziaływania pomiędzy obiektami o masach tysiące razy mniejszych. To zaś oznacza, że mogą dojść do poziomu, przy którym zaczną dziać się zadziwiające rzeczy.
Jak już wspomnieliśmy, teoria dotycząca grawitacji jest niekompatybilna z mechaniką kwantową. Jeśli Austriakom rzeczywiście uda się rozpocząć pomiary mas tysiące razy mniejszych niż wspomniane 90 miligramów, mogą zacząć mierzyć oddziaływania obiektów znajdujących się w kwantowej superpozycji. Mierzyliby zatem oddziaływanie pomiędzy obiektami, których położenia nie można określić, a jednocześnie ich oddziaływanie grawitacyjne zależałoby od położenia.
Inne potencjalne zastosowanie dla takich eksperymentów to przetestowanie niektórych wersji teorii strun, zmodyfikowanej dynamiki newtonowskiej i innych. Naukowcy z Wiednia muszą jednak najpierw wykazać, że rzeczywiście są w stanie badać obiekty we wspomnianej skali.
Komentarze (2)
peceed, 12 marca 2021, 12:36
Dawno i nieprawda.
Bez znaczenia. Superpozycja jest zawsze i wszędzie, wszystko rozbija się o jej skalę.
To nie tak. Superpozycja nie oznacza że położenia nie da się określić, tylko że tego nie zrobiono.
Jeśli urządzenie będzie mierzyć oddziaływanie zależne od położenia, to superpozycja zniknie (zniknie wcześniej zanim cokolwiek uda się zmierzyć, ale rozważmy doświadczenie idealne). Przy perfekcyjnie izolowanym urządzeniu do pomiarów grawitacyjnych znajdzie się ono w stanie superpozycji wyników różnych pomiarów i dopiero zaglądając jaki był wynik uzyskamy redukcję do jednej określonej wartości pomiaru.
Warto jeszcze dodać, że sama czasoprzestrzeń jest tak naprawdę superpozycja czasoprzestrzeni o różnym stopniu "wygięcia".
pinopa, 12 marca 2021, 13:22
Czytelników, którzy chcą poznać, jaka jest istota grawitacji, zachęcam do przeczytania art. "Zasada MPP - Prawda Nieabsolutna" na http://pinopa.narod.ru/17_PrintsipMPP_pl.pdf.