Oto jak szybko stworzyć sztuczne naczynia krwionośne do badań biomedycznych

| Technologia
Postaw mi kawę na buycoffee.to
Trust „Tru” Katsande

W badaniach biomedycznych coraz ważniejszą rolę odgrywają układy organs-on-a-chip. To tkanki hodowane na układach mikroprzepływowych, które pozwalają, na przykład, na badanie wpływu leków na organizm czy interakcji pomiędzy organami. Układy takie mają poważną wadę. Tworzone na nich mini organy nie posiadają naczyń krwionośnych, co utrudnia prowadzenie wiarygodnych badań. Naukowcy z Uniwersytetu Technicznego w Wiedniu (TU Wien) i Keio University opracowali technologię szybkiego i powtarzalnego tworzenia naczyń krwionośnych za pomocą ultraszybkich impulsów laserowych.

Alice Salvadori et al 2025 Biofabrication 17 035011, 10.1088/1758-5090/add37e Masafumi Watanabe et al., Materials Today Bio, Volume 32, 2025, 101643, doi.org/10.1016/j.mtbio.2025.101643

Jeśli chcesz badać, jak pewne leki są transportowane, metabolizowane i absorbowane w różnych tkankach, potrzebujesz sieci najdrobniejszych naczyń krwionośnych, wyjaśnia Alice Salvatori z Research Group 3D Printing and Biofabrication na TU Wien. Najlepiej by było utworzyć takie naczynia w hydrożelu. Utworzenie w nim niewielkich kanalików umożliwiłoby wzrost w nich komórek śródbłonka, które stanowią wyściółkę naczyń krwionośnych, i utworzenie w ten sposób struktury naśladującej działanie takich naczyń. Jednak poważnym wyzwaniem jest tutaj kontrolowanie kształtu i rozmiaru kanalików. Ich geometria różniła się między próbkami, co uniemożliwiało prowadzenie precyzyjnie kontrolowanych powtarzalnych doświadczeń.

Uczeni z Austrii i Japonii wykazali, że za pomocą lasera femtosekundowego można szybko i w kontrolowany sposób utworzyć potrzebne struktury. Możemy stworzyć kanaliki oddalone od siebie zaledwie o 100 mikrometrów. To jest niezwykle potrzebne, jeśli chcemy oddać prawdziwe zagęszczenie naczyń krwionośnych w niektórych organach, mówi Aleksandr Ovsianikov, który nadzorował badania.

Jednak nie chodzi tylko o zagęszczenie. Musi istnieć możliwość szybkiego tworzenia naczyń krwionośnych i muszą one pozostać stabilne gdy mikrokanaliki zostaną zasiedlone przez komórki. Wiemy, że komórki aktywnie zmieniają swoje środowisko. To może prowadzić do deformacji czy zapadnięcia się naczyń. Dlatego poprawiliśmy proces przygotowania materiału, wyjaśnia Salvadori.

Naukowcy wykorzystali nie jedno-, a dwustopniowy proces przygotowywania hydrożelu. Był on podgrzewany w dwóch etapach w różnych temperaturach. To zmieniło jego strukturę i zapewniło mu większą stabilność. Dzięki temu naczynia krwionośne utworzone w takim materiale pozostały otwarte i utrzymały kształt w czasie. Nie tylko pokazaliśmy, że możliwe jest stworzenie naczyń krwionośnych, w których można przeprowadzić perfuzję. Pokazaliśmy coś ważniejszego: udowodniliśmy, że można je wytwarzać na masową skalę. Przygotowanie 30 kanalików zajmuje jedynie 10 minut, to co najmniej 60 razy szybciej niż przy użyciu innych technik, dodaje Ovsianikov.

Co więcej, uczeni dowiedli, że ich sztuczne naczynia krwionośne zachowują się tak, jak naturalne. Tak samo reagowały na przykład na stan zapalny. Uczeni z Wiednia, we współpracy ze specjalistami z Keiko University, stworzyli też doskonałą replikę tkanki wątroby z odpowiednią siecią naczyń krwionośnych. Więcej o ich osiągnięciach przeczytamy na łamach pisma Biofabrication: Controlled microvasculature for organ-on-a-chip applications produced by high-definition laser patterning. Z kolei w artykule Advanced liver-on-chip model mimicking hepatic lobule with continuous microvascular network via high-definition laser patterning, opisano eksperymenty z użyciem nowej technologii.

organs-on-a-chip biomedycyna badania naczynia krwionośne