Promieniowanie kosmiczne poważnym problemem dla komputerów kwantowych
Twórcy komputerów kwantowych będą musieli przeprojektować je tak, by maksymalnie chronić je przed promieniowaniem tła. Robert McDermott z University of Wisconsin-Madison, którego wcześniejsze badania wykazały, że promieniowanie kosmiczne może poważnie zakłócić pracę komputerów kwantowych, stwierdził teraz, że powszechnie używana metoda korekcji błędów nie poradzi sobie z tym problemem.
Prowadzony przez McDermotta międzynarodowy zespół specjalistów sugeruje, że do utrzymania akceptowalnego poziomu błędów konieczne będzie nie tylko zastosowanie fizycznych barier chroniących komputery kwantowe przed promieniowaniem, ale również zmiana w samych projektach układów scalonych.
Promieniowanie kosmiczne to znany problem, który trapi też klasyczne komputery, mogąc wywoływać w nich błędy. Jednak w przypadku komputerów kwantowych problem jest większy, gdyż promieniowanie może zmienić stan kubitu w dwóch kierunkach (reprezentowanych przez osie X i Z), a nie w jednym. Dlatego też stosuje się metodę korekcji błędów, w której informacje zapisywane są w jednowymiarowej macierzy kubitów, z których każdy jest połączony z sąsiadem. Przy niewielkiej liczbie błędów możliwe jest wykorzystanie kubitów sąsiednich do naprawienia stanu błędnego kubity. Pod warunkiem jednak, że w tym samym czasie nie przydarzy się błąd w kubitach ze sobą sąsiadujących.
Badania zespołu McDermotta wskazują jednak, że błędy powodowane przez promieniowanie kosmiczne i promieniowanie gamma nie spełniają drugiego z warunków. Odkryliśmy istnienie wielu mechanizmów występowania skorelowanych błędów, mówi Chris Wilen, jeden z badaczy.
Na potrzeby swoich badań zespół stworzył chip zawierający dwie pary kubitów. Odległość pomiędzy kubitami jednej z par wynosiła 340 µm, a między drugą parą – 640 µm. Podczas przeprowadzania operacji kwantowych na swoim systemie, naukowcy zaobserwowali liczne jednoczesne przeskoki ładunków w parach kubitów. Gdy przeprowadzili modelowanie tych przeskoków za pomocą standardowych narzędzi używanych w fizyce cząstek, odkryli, że ich źródłem są uderzenia promieni kosmicznych i promieni gamma w sam układ scalony.
Prawdopodobieństwo skorelowanych przeskoków ładunku było większe w parze o mniejsze odległości pomiędzy kubitami, co wskazuje, że odsunięcie kubitów od siebie pozwoli na zmniejszenie liczby błędów.
Odkryto jednak również inny poważny problem. Okazało się bowiem, że energia uderzeń promieni w chip była zamieniana z fonony, wibracje materiału, które mogą prowadzić do powstania kwazicząstek. Gdy fonony się rozprzestrzeniały w układzie, generowały kolejne skorelowane błędy, które pojawiały się w całym niewielkim układzie. I właśnie to „zatrucie kwazicząstkami” może być najpoważniejszym problemem dla systemów korekcji błędów.
Autorzy badań proponują dwa rozwiązania problemu. Jeden z nich to zastosowanie ołowianej obudowy wokół kwantowych układów scalonych i umieszczenie ich pod ziemią, tak jak się robi np. z wykrywaczami neutrin. Druga z metod to zmniejszenie wrażliwości kubitów, co można by osiągnąć np. poprzez domieszkowanie chipa materiałami wiążącymi kwazicząstki lub wyprowadzającymi je poza układ.
Komentarze (0)