I nastała ciemność

| Ciekawostki
© rastafabi licencja: Creative Commons

Niewykluczone, że ciemne wieki, jak zwykło się nazywać średniowiecze, wcale nie były ciemne tylko w przenośni. Naukowcy sądzą, że w VI wieku naszej ery nastąpił potężny wybuch wulkanu, który spowodował globalne ochłodzenie. To z kolei doprowadziło do wielkiego głodu, konfliktu kulturowego i szeregu innych nieszczęść.

To by wyjaśniało, dlaczego zapisy historyczne z epoki mówią o zachmurzonym niebie i zimniejszym niż dziś klimacie. W dokumentach irlandzkich pojawiają się wzmianki o kilkuletnim braku chleba po 536 roku, a Chińczycy wspominają o opadach śniegu latem.

Prokopiusz (Prokop) z Cezarei, najsłynniejszy historyk bizantyjski, wyjawił, że w 536 roku na świecie zapanował lęk. Słońce utraciło swój blask, wydawało się, jakby nastało ciągłe zaćmienie, a przebijające się promienie nie były już tak jasne.

Współcześni naukowcy przez 20 lat rozpoznawali średniowieczną zmianę klimatu. Zaobserwowali, że 3 pierścienie przyrostu rocznego z tego okresu wskazują na wegetację spowolnioną niską temperaturą. Przyczyna ochłodzenia pozostawała nieznana, ale wygląda na to, że wszystkiemu jest winien wulkan.

Każda normalna interpretacja danych powinna wskazać na przyczynę wulkaniczną – uważa Keith Briffa, paleoklimatolog z Uniwersytetu Wschodniej Anglii, autor najnowszego badania. Mike Baillie, paleoekolog z Queen\'s University w Belfaście, proponował, by uznać, że pył zawieszony w atmosferze i niedopuszczający do powierzchni ziemi promieni słonecznych powstał w wyniku upadku meteorytu.

Zespół Briffy potwierdził teorię erupcji wulkanicznej, odnajdując w lodach Grenlandii i Antarktyki charakterystyczne ślady. Datuje się je na 533-536 rok, dlatego naukowcy sądzą, że wybuch miał miejsce w roku 535. Jego skutki były odczuwalne w następnych latach (Geophysical Research Letters). Czym są wspomniane charakterystyczne ślady? Jonami siarczanowymi powstającymi z dwutlenku siarki, które formują się podczas erupcji wulkanu. Nie powstają one natomiast w czasie upadku meteorytu, chyba że trafi on w skały bogate w siarkę.

Ponieważ związki siarki znajdowano zarówno w lodach na półkuli północnej, jak i południowej, erupcja miała najprawdopodobniej miejsce w pobliżu równika. Skutki uderzenia przejęła na siebie jednak w większości półkula północna, dlatego tylko tutaj doszło do ochłodzenia klimatu.

Briffa wyjaśnia, że trudność nie polega na odnalezieniu jonów siarczanowych w lodzie, ale na połączeniu czasu ich odłożenia z porą powstania w drewnie pierścieni, które świadczą o spadku temperatury na dużym obszarze naszej planety. Kolejny problem to odróżnienie związków siarki z wielkiego wybuchu od jonów z pomniejszych, ale następujących krótko po sobie erupcji.

Bo Vinther i współpracownicy z Uniwersytetu w Kopenhadze stwierdzili, że wybuch w VI wieku był naprawdę potężny. Spowodował wzniesienie olbrzymiej ilości kurzu. Szacuje się, że było go o 40% więcej niż po erupcji indonezyjskiego wulkanu Tambora w 1815 r., która zabiła ok. 92 tys. ludzi (uznaje się ją za jedną z największych katastrof wulkanicznych).

Naukowcy sądzą, że niska temperatura mogła ułatwić namnażanie pałeczki dżumy, przez co mikrobowi udało się rozpętać prawdziwą epidemię.

średniowiecze wieki ciemne erupcja wybuch wulkan globalne ochłodzenie Keith Briffa