Zagadka przemieszczającego się DNA rozwiązana po ponad dekadzie

| Nauki przyrodnicze
MPI-MP, Nature 511

Ponad dekadę temu genetycy roślin zauważyli coś dziwnego. Badając szczepione rośliny stwierdzili, że w komórkach każdej z nich istnieją sygnały wskazujące, że doszło między nimi do wymiany dużych ilości DNA. Samo w sobie nie jest to niczym dziwnym, nie od dzisiaj wiemy o horyzontalnym transferze genów. Jednak w tym wypadku wydało się, że doszło do transferu całego nietkniętego genomu chloroplastów. To już była zagadka, gdyż komórki roślinne otoczone są ochronną ścianą i nie ma oczywistego sposobu wymiany tak dużej ilości DNA.

Potrzeba było ponad 10 lat, by rozwiązać tę zagadkę. Naukowcy z Instytutu Molekularnej Fizjologii Roślin im. Maxa Plancka w Poczdamie zarejestrowali właśnie film dokumentujący taki transfer genów. Okazało się, nie tylko, że ściany komórkowe roślin są czasem bardziej porowate niż sądziliśmy, ale że istnieje mechanizm, dzięki całe organelle wędrują pomiędzy sąsiadującymi komórkami. Nowością jest tutaj wykazanie, że całe fizyczne organelle przemieszczają się pomiędzy komórkami. Dwie różne rośliny mogą wymienić organelle, mówi Charles Melnyk z Uniwersytetu Nauk Rolniczych w Uppsali.

Szczepienie roślin jest stosowane co najmniej od czasów starożytnego Rzymu. Technika ta pozwala np. młodym roślinom na wcześniejsze owocowanie i poprawia ich odporność. Do zaszczepienia może też dojść w sposób naturalny.
Przed około dekadą Ralph Bock z Instytutu Molekularnej Fizjologii Roślin, zaszczepił dwa gatunki tytoniu, a następnie zsekwencjonował geny rośliny z obu stron modzela, czyli miejsca połączenia roślin. Okazało się, że rośliny wymieniły całe genomy chloroplastów.

Tego się nie można było spodziewać, mówi Pal Maliga, genetyk roślin z Rutgers University, który niezależnie znalazł dowody na transfer chloroplastów i mitochondriów. Komórki roślinne otoczone są sztywnymi ścianami, więc wyobrażałem sobie komórki roślinne jako cytoplazmę w klatce, z której nie może się wydostać, mówi Maliga.

Dowody na wymianę dużej ilości materiału genetycznego stanowiły się prawdziwą zagadkę dla specjalistów. Jedynymi znanymi otworami w ścianie komórek roślinnych były niewielkie plazmodesmy, pomosty o średnicy około 0,05 mikrometra, dzięki którym sąsiadujące komórki mogą wymieniać proteiny i molekuły RNA. Tymczasem typowy chloroplast ma zaś średnicę około 5 mikrometrów. Jest więc zdecydowanie zbyt duży, by przedostać się przez plazmodesmę.

Zagadkę udało się rozwiązać, gdy Bock rozpoczął współpracę z Alexandrem Hertlem, który specjalizuje się w obrazowaniu komórek w czasie rzeczywistym. Najpierw naukowcy zauważyli, że otwory w komórkach mogą mieć średnicę nawet 1,5 mikrometra. To jednak nadal zbyt mało, by przedostał się przez nie chloroplast. Naukowcy przyjrzeli się też komórkom w modzelu i wówczas zauważyli przemieszczający się chloroplast. Okazało się, że niektóre chloroplasty mogą zmieniać się w bardziej prymitywne proto-plastydy, których średnica może wynosić jedynie 0,2 mikrometra. Naukowcy ze zdumieniem obserwowali, jak takie proto-plastydy przemieszały się się w kierunku właśnie odkrytych większych otworów w ścianach komórkowych. Przeciskały się się przez nie i powracały do normalnych rozmiarów dla chloroplastów.

Hertle przyznaje, że naukowcy nie rozumieją dobrze metamorfozy chloroplastów, jednak wydaje się, że jest to reakcja na niedobór węgla i zmniejszoną fotosyntezę. Gdy bowiem wyłączano światło, zaobserwowano aż 5-krotny wzrost transferu organelli.

To, jak dobrze plastydy funkcjonują w nowej roślinie, zależy od tego, na ile rośliny są spokrewnione genetycznie. Im są sobie bliższe, tym lepiej plastydy działają.

Maliga podejrzewa, że proto-plastydy mogą zawierać lub wytwarzać molekuły sygnałowe, które pomagają w leczeniu miejsca szczepienia. Wydaje się też, że powstające duże otwory w ścianach komórkowych również są efektem reakcji rośliny na szczepienie. Nie można jednak wykluczyć, że formują się też na którymś z etapów normalnego wzrostu rośliny, uważa uczony.
Swoje badania naukowcy opisali na łamach Science Advances.

szczepienie roślin DNA chloroplast