Precyzyjne pomiary czasu pozwolą połączyć mechanikę kwantową i teorię względności?
Zgodnie ze słynnym paradoksem bliźniąt, osoba poruszająca się z dużą prędkością, starzeje się wolniej niż jej brat-bliźniak. Podobnie ma się sprawa na Ziemi i innych dużych obiektach, które zaginają czasoprzestrzeń spowalniając upływ czasu. Jeśli jedno z bliźniąt będzie mieszkało nad morzem, a drugie na szczycie Mount Everest, gdzie grawitacja Ziemi oddziałuje nieco słabiej, będą starzały się w różnym tempie. Taka różnica została zresztą potwierdzona w eksperymencie, w którym jeden zegar atomowy umieszczono na poziomie morza, a drugi na szczycie góry.
Teraz fizykom udało się zmierzyć różnice w upływie czasu w milimetrowej skali. Jun Ye z JILA w stanie Kolorado, wybitny badacz atomowych zegarów sieci optycznej, zmierzył różnice pomiędzy górną a dolną częścią chmury atomów o wysokości milimetra. To krok naprzód w kierunku badania teorii względności i mechaniki kwantowej, których obecnie nie potrafimy połączyć w jedną całość.
Podczas swojego eksperymentu Ye wykorzystał optyczny zegar atomowy zbudowany z chmury 100 000 atomów strontu. Zegar wzbudzany był laserem. Przy odpowiedniej, bardzo precyzyjnej częstotliwości pracy lasera, elektrony krążące wokół każdego z jąder atomowych zajmowały wyższy poziom energetyczny. Jako, że tylko konkretna częstotliwość pracy lasera powodowały odpowiednie wzbudzenie elektronów, systemu można był użyć do niezwykle precyzyjnych pomiarów czasu. Można go porównać do zegara z wahadłem, gdzie rolę wahadła pełnią oscylacje światła lasera.
Gdy naukowcy porównali częstotliwość „tykania zegara” na w górnej i dolnej części chmury, okazało się, że czas pomiędzy poszczególnymi przejściami jest na górze o 0,00000000000000001% krótszy niż na dole.
Taki a nie inny sposób zaprojektowania eksperymentu pozwolił na usunięcie z pomiarów wielu zakłóceń. Na chmurę atomów wpływać może bowiem pole elektryczne, pole magnetyczne, ciepło otoczenia czy sam laser. Jednak niezależnie od tych wszystkich czynników różnica w częstotliwości pomiędzy górą a dołem chmury pozostawała taka sama. Autorzy badań mówią, że to krok w kierunku zunifikowania ogólnej teorii względności i mechaniki kwantowej.
Teoria względności opisuje czasoprzestrzeń, w której obiekty mają dobrze zdefiniowane właściwości i przemieszczają się pomiędzy punktami przestrzeni w zdefiniowany sposób. Z kolei w mechanice kwantowej obiekt może znajdować się w superpozycji, czyli przyjmować jednocześnie różne właściwości lub też może nagle przeskoczyć do innej lokalizacji. Obie teorie dobrze opisują właściwe sobie rzeczywistości, ale nie przystają do siebie nawzajem. Jeśli bowiem rozważymy masywny obiekt, jak np. planetę, to – zgodnie z ogólną teorią względności – będzie on zaginał czasoprzestrzeń. Jeśli teraz zastosujemy do niego mechanikę kwantową, czyli umieścimy ten obiekt w superpozycji, zatem jednocześnie będzie się on znajdował w dwóch różnych miejscach, to rodzi się pytanie, czy również geometria czasoprzestrzeni znajdzie się w superpozycji. Niemożność zunifikowania obu tych teorii, które na początku XX wieku zrewolucjonizowały fizykę, to wciąż poważny problem dla nauki. Oznacza bowiem, że nie jesteśmy w stanie w pełni opisać rzeczywistości.
Zegary atomowe to bardzo obiecujące systemy do badania tego problemu. Odmierzają bowiem czas, który w szczególnej teorii względności jest czwartą współrzędną czasoprzestrzeni, a jednocześnie przejścia pomiędzy poziomami energetycznymi elektronów są możliwe dzięki zjawiskom kwantowym.
Komentarze (0)