Niemcy zmierzyli najkrótszy w historii odcinek czasu
Niemieccy fizycy z Uniwersytetu im. Goethego we Frankfurcie dokonali najkrótszego w historii pomiaru czasu. We współpracy z naukowcami z DESY (Niemiecki Synchrotron Elektronowy) w Hamburgu i Instytutu Fritza Habera w Berlinie zmierzyli czas przejścia światła przez molekułę. Dokonany pomiar mieści się w przedziale zeptosekund.
W 1999 roku egipski chemik Ahmed Zewail otrzymał Nagrodę Nobla za zmierzenie prędkości, z jaką molekuły zmieniają kształt. Wykorzystując laser stwierdził, że tworzenie się i rozpadanie wiązań chemicznych odbywa się w ciągu femtosekund. Jedna femtosekunda to zaś 0,000000000000001 sekundy (10-15 s).
Teraz zespół profesora Reinharda Dörnera po raz pierwszy w historii dokonał pomiarów odcinków czasu, które są o cały rząd wielkości krótsze od femtosekundy. Niemcy zmierzyli, ile czasu zajmuje fotonowi przejście przez molekułę wodoru. Okazało się, że dla średniej długości wiązania molekuły czas ten wynosi 247 zeptosekund. To najkrótszy odcinek czasu, jaki kiedykolwiek udało się zmierzyć. Jedna zeptosekunda to 10-21 sekundy.
Pomiarów dokonano wykorzystując molekułę H2, którą wzbudzono w akceleratorze za pomocą promieniowania rentgenowskiego. Energia promieni została dobrana tak, by pojedynczy foton wystarczył do wyrzucenia obu elektronów z molekuły.
Elektrony zachowują się jednocześnie jak cząstki i fale. Wyrzucenie pierwszego z nich skutkowało pojawieniem się fali, po chwili zaś dołączyła fala drugiego elektronu. Z kolei foton zachowywał się jak płaski kamyk, który dwukrotnie skakał po falach.
Jako, że znaliśmy orientację przestrzenną molekuły wodoru, wykorzystaliśmy interferencję fal obu elektronów, by dokładnie obliczyć, kiedy foton dotarł do pierwszego, a kiedy do drugiego atomu wodoru. Okazało się, że czas, jaki zajęło fotonowi przejście pomiędzy atomami, wynosi do 247 zeptosekund, w zależności od tego, jak daleko z punktu widzenia fotonu znajdowały się oba atomy, wyjaśnia Sven Grudmann.
Profesor Reinhard Dörner dodaje: Po raz pierwszy udało się zaobserwować, że elektrony w molekule nie reagują na światło w tym samym czasie. Opóźnienie ma miejsce, gdyż informacja w molekule rozprzestrzenia się z prędkością światła. Dzięki tym badaniom możemy udoskonalić naszą technologię i wykorzystać ją do innych badań.
Komentarze (59)
Jarek Duda, 17 października 2020, 12:01
Przez kwantowców mówi się że kolaps funkcji falowej jest natychmiastowy i "shut up and calculate" - jest dosłownie zakaz pytania się o szczegóły.
Na szczęście pomiary dochodzą do tych rozdzielczości czasowych (tutaj czy "Delay in photoemission": https://science.sciencemag.org/content/328/5986/1658 ) czy przestrzennych (dosłownie zdjęcia orbitali jako średnie pozycje elektronów: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.80.165404 ), więc może w końcu uda się zacząć pytać o szczegóły tych procesów.
Np. fala EM musi mieć przynajmniej ~jeden okres, czyli kilkaset nanometrów dla fotonów optycznych - wyprodukowanie ich trwa w femtosekundach ... no więc co konkretnie dzieje się w atomie w tym czasie - podczas takiej deekscytacji?
peceed, 17 października 2020, 14:35
1) Czas przejścia pomiędzy poziomami energetycznymi w atomie nie jest czasem kolapsu kwantowego, z niewyjaśnionych powodów błędnie utożsamia kolega te 2 "zjawiska". Jest to tym dziwniejsze, że prawidłowo (wy)tłumaczono to koledze wiele lat temu na Physics Stack Exchange.
2) Jeśli chce kolega sobie policzyć ile trwa dla niego praktyczny kolaps funkcji falowej, to musi sobie policzyć dla przykładu czas dekoherencji 1 kg wody w powietrzu w temperaturze pokojowej. Ok, nie będę złośliwy: niech będzie to czas dekoherencji 1.5 kg gluta białkowo-tłuszczowo-wodnego (nie żeby wynik różnił się istotnie)
Co ważne, pomimo praktycznemu 0 i tak nie ma on żadnego znaczenia dla skal czasowych procesów które da się badać, dokładnie z tych samych powodów, dla których można pozwolić sobie na bardzo długi czas odczytywania wyniku zmierzonego na stoperze.
3) Nie ma "zakazu pytania się o szczegóły" Pytania dla mechaniki kwantowej zadaje się za pomocą operatorów, muszą one odpowiadać możliwym do przeprowadzenia eksperymentom. Jak uda się koledze sformułować coś ciekawego w tym języku, to mechanika kwantowa grzecznie odpowie za pomocą prawdopodobieństw, albo wartości średnich. Problemy kolegi są logicznie równoważne do "no ale którą szczelinę wybrał foton tworząc fragment obrazu interferencyjnego". Nie ma fundamentalnej odpowiedzi. Tak rozumiane detale tego co się dzieje w atomie to są jedynie superpozycje nieskończonej ilości możliwości ograniczonych przez wyniki obserwacji.
Sam sferyczny potencjał jądra to jedynie średnie przybliżenie, można by liczyć oddziaływanie elektronów z "chmurą kwarkowo-gluonową", aby poznać "detale". Czy muszę tłumaczyć dlaczego nikt tego nie robi w praktyce, i dlaczego nie ma to najmniejszego praktycznego sensu? I dalej, można liczyć struny. Na chwilę obecną to dopiero są ostateczne detale!
4) Może po prostu czas zacząć liczyć? Bo zajmuje się kolega "filozoficznymi" aspektami teorii którą bardzo słabo operuje na poziomie technicznym.
5) Wszystkiemu winni są kwantowcy, masoni i cykliści.
Jarek Duda, 17 października 2020, 14:43
atom wzbudzony -> atom w stanie podstawowym + foton
Taki foton "trwa" ~femtosekundy, co się wtedy konkretnie dzieje? Foton to fala elektromagnetyczna - jaka konkretnie? Podstawowe pytania o których praktycznie nic nie wiemy ...
peceed, 17 października 2020, 15:03
Czuję się trolowany, bo kolega najwyraźniej nawet nie stara się czytać odpowiedzi ze zrozumieniem. Zero polemiki, odniesienia się do wypunktowanych argumentów itd.
Tutaj odpowiedzią jest:
I tyle w temacie. "Konkrety" nie istnieją.
Powód jest dokładnie taki sam jak ten, z powodu którego elektron nie ma smaku, faktury ani koloru. Takie pytania (o konkrety) nie mają sensu logicznego.
I wciąż polecam poczytać Feynmanna piszącego o swoim ojcu, który zadawał dokładnie takie same pytania! To powinno zapalić koledze lampkę ostrzegawczą.
To nie jest tak, że "nic nie wiemy o tych pytaniach". Wiemy o nich bardzo wiele, określając rzecz w potocznym języku: są one po prostu głupie.
Fizyka narzuca wiele ograniczeń na to jakie pytania mają sens a jakie nie, i sama poprawność gramatyczna zdań zakończonych pytajnikiem po prostu nie wystarcza:
Jajcenty, 17 października 2020, 15:28
Ale 'potem' konkrety zaczynają istnieć. Pytanie o to co się dzieje pomiędzy 'nie ma sensu' a 'foton leci' jest uprawnione. To że model matematyczny nie dostarcza opisu nie jest wystarczającym powodem by pytań nie zadawać. Co do faktury elektronu - trąci arogancją takie stwierdzenie z ust osoby, która nigdy nie widziała elektronu z bliska.
Jarek Duda, 17 października 2020, 15:39
No właśnie, mamy "zakon nie pytaj" (jeszcze "stringowi krzyżowcy" ; ) ... oraz na szczęście eksperymentatorów którzy mają to gdzieś i po prostu pytają bezpośrednio naturę, jednak dostając konkretne odpowiedzi, np.:
- o czas przelotu fotonu/fali EM przez orbital tutaj: https://science.sciencemag.org/content/370/6514/339
- o jednak niezerowy czas fotoemisji: https://science.sciencemag.org/content/328/5986/1658
- o pozycję elektronu w orbitalu: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.80.165404
peceed, 17 października 2020, 17:03
Nie. Konkrety pomiędzy pomiarami nigdy nie zaczynają istnieć. Warto pamiętać że każdy pomiar oddziałuje, więc nigdy nie można powiedzieć że zmierzona wielkość była taka przed pomiarem i my tylko uzyskaliśmy wiedzę na jej temat, tylko zmieniliśmy stan układu, w fundamentalnie przypadkowy sposób, na taki, w którym możemy znać pewną mierzoną wielkość.
Nigdy w życiu. Można jedynie zastanawiać się, co może się dziać. I to pomijając fakt, że "foton leci" w praktyce nigdy nie oznacza zasuwającego w przestrzeni punkciku, o fotonie dowiadujemy się że gdzieś był jak go złapiemy. Zatem rozpatrywanie "foton leci tutaj" ma sens tylko jako jedna z "zespolonych alternatyw". Każdy konkret między pomiarami to tylko "element domysłu odnośnie możliwości", abstrakcja która może być rozumiana jako parametryzacja przestrzeni możliwości.
bla bla bla gul gul?
Że co, pytanie nie miało fizycznego sensu? No właśnie. Tylko że ten sens nie pojawia się w momencie kiedy używamy słów występujących w fizyce z użyciem poprawnej gramatyki, to nie wystarcza. Potrzebny jest matematyczny model w którym pytania mają precyzyjną formę.
Matematyczny model opisujący rzeczywistość musi perfekcyjnie opisywać wyniki eksperymentów i nic ponadto, na pewno nie musi dawać odpowiedzi na pytania nie należące do tego modelu! Mechanika kwantowa nie jest od tego mówić o pytaniach mających sens wyłącznie w mechanice klasycznej.
To już trąci trollowaniem.
Właściwa religijna analogia to taka, w których teolog hibernatus męczy ludzi na wydziale fizyki pytaniem ile diabłów mieści się na łebku szpilki.
Wielce zdziwiony, że każą mu zmienić pytanie.
Żeby był w stanie zadawać właściwe pytania musi przyswoić odpowiedni system pojęciowy.
"Przyswoić" to piękne słowo trafiające w sedno. "Poznać" to trochę za mało.
Musi kolega przyswoić sobie mechanikę kwantową.
Skąd w ogóle pomysł, że mechanika kwantowa miałaby dawać inne przewidywania wyników eksperymentów?
Słowo "mechanika" nie jest przypadkiem, oznacza to że można sobie budować przybliżenia. Proste modele atomów nie przejmują się detalami i nie ma w tym niczego złego!
Pozycja elektronu w orbitalu to zagadnienie o którym wszystko co istotne odpowiedział Max Born.
Jarek Duda, 17 października 2020, 17:05
Astro, czytałem, tutaj te 247zs to różnica czasu ekscytacji dwóch atomów w molekule wodoru, "zdjęcia orbitali" są z uśrednienia pozycji elektronów opuszczających orbitale.
O jeszcze warto o pomiarze średnich trajektorii interferujących pojedynczych fotonów: https://science.sciencemag.org/content/332/6034/1170
Albo testowanie którymi lusterkami przyleciały interferujące fotony: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.240402
Co do długości fali, warto zerknąć na minimalne czasy impulsów laserów.
Peceed, odnośnie "ile diabłów mieści się na łebku szpilki.", może lepiej opowiedz nam ile stringów?
Ja osobiście nie lubię wymyślonych koncepcji, staram się używać tylko tych dobrze zweryfikowanych jak np. pole elektromagnetyczne - pytając o jego konfigurację za fotonem czy elektronem.
peceed, 17 października 2020, 17:09
Ale ważne że nastąpił "match" chwytliwych słów użytych w tytułach
Nawet poszukałem sobie otwarte dostępy do tych artykułów i tam nie ma niczego coby wstrząsało mechaniką kwantową.
Po prostu oddziaływania wieloelektronowe są cholernie skomplikowane obliczeniowo.
No i co w tym dziwnego, że po uśrednieniu iluśtam pomiarów dostajemy "zdjęcia" orbitali?
Nie ma takiego prawa. Fala elektromagnetyczna nie musi mieć nawet okresu.
To już przerabialiśmy kilka miesięcy temu, nie ma czegoś takiego jak średnia trajektoria fotonu w lepszym sensie niż sama fala EM.
Jakby to powiedzieć, już to zdanie określa wartość merytoryczną artykułu. Albowiem dla jakiegokolwiek kompetentnego fizyka nie ma niczego "surprising" w prostych eksperymentach. Stopień "suprajsing" jest bezpośrednio skorelowany ze stopniem niekompetencji teoretycznej eksperymentatorów.
Jarek Duda, 17 października 2020, 17:30
Dla mnie nic dziwnego, ani w tym że tutaj mają jakby mikroskop elektronowy o rozdzielczości subatomowej - określający oryginalną pozycję elektronu w orbitalu na podstawie tego którą komórkę w matrycy aktywuje.
Mówimy o fotonach optycznych - które są falami elektromagnetycznymi o bardzo konkretnie określonej energii, pędzie, częstotliwość, momentcie pędu, prędkości ... aczkolwiek o właściwie nieznanej konfiguracji tych pól (bo nie wolno pytać).
Ich długość fali to zwykle kilkaset nanometrów, co odpowiada czasowi w femtosekundach - co np. taki czas oznacza z perspektywy mechanizmu ich produkcji jak deekscytacja atomu?
ps. Niesamowite rzeczy uzyskują w końcu wchodząc w takie konfiguracje pól EM, np. https://en.wikipedia.org/wiki/Orbital_angular_momentum_of_light i https://en.wikipedia.org/wiki/Spin_angular_momentum_of_light czy "węzły światła": https://www.livescience.com/8012-twisted-physics-scientists-create-light-knots.html
Jajcenty, 17 października 2020, 17:31
Ja mam nieco większe wymagania. Dopasować fragment paraboli prostą można z dowolną dokładnością o ile tylko zgodzimy się co do wielkości fragmentu. I to właśnie się dzieje. Ja chciałbym rzecz zobaczyć z nieco większą dokładnością, powiedzmy w rozdzielczości rzędu czasu Plancka, a Ty decydujesz arbitralnie, że poniżej femtosekundy świat nie ma sensu.
Silnie mi się to kojarzy z wiekowym żartem o bacy: coś mi się widzi, że ty tu nie po naukę przyszedłeś, ale żeby po mordzie dostać. W sensie: przyszedłem po naukę, a dostałem propozycję bym zadawał 'sensowne' pytania.
peceed, 17 października 2020, 17:55
oznacza on tyle, że czas produkcji jest nieoznaczony w takim stopniu, jak nieoznaczone jest położenie!
No nie róbmy sobie jaj. Takie fale to w naszym wszechświecie nie istnieją. A żeby uzyskać choćby zbliżone to musimy mieć wysoką nieoznaczoność położenia atomów które je emitują (a więc i czasów emisji). Rozumie kolega dowcip? Zastanawia się kolega nad mechanizmami fotoemisji w sytuacji, kiedy w laserze nie wiadomo nawet, które atomy dokonały tej fotoemisji, i ta niewiedza jest kluczowa dla uzyskania sinusoidalnej fali i ustalonej energii.
Myślę że laser to bardzo dobry układ żeby kolega sobie potrenował działanie mechaniki kwantowej. Jak to się dzieje, że te konretne emisje o wielkiej nieoznaczoności energii dają "za szybką" pięknie określone energie. Wtedy zrozumie też kolega, dlaczego fizycy nie pytają o detale "który atom w laserze argonowym wyemitował elektron". To jest jakościowo identyczny powód dla którego praktycznie nikogo nie interesują detale fotoemisji w rozumieniu klasycznym, dlaczego są całkowicie pomijalne.
Ja się tutaj bardzo wiele uczę, i to interdyscyplinarnie, ale raczej z antropologii, socjologii i psychologii. A może i psychiatrii. Mam nadzieję, że nie dojdziemy do medycyny sądowej
Tak, świat klasyczny w skali atomowej nie ma sensu. Ma sens mechanika kwantowa, ale trzeba jeszcze rozumieć znaczenie pojęcia "ma sens".
Jajcenty, 17 października 2020, 17:58
Myślę, że identycznie myślał Demokryt o swoich kulkach.
Jarek Duda, 17 października 2020, 18:02
Dla "zakonu nie pytam" może być nieokreślone czy nieoznaczone, ale na szczęście eksperymentator ma to w nosie i pyta się bezpośrednio fizyki - dostając konkretne czasy nawet w attosekundach, czy tutaj poniżej
peceed, 17 października 2020, 18:12
Są bardzo dobre powody, z których powodu fizycy eksperymentalni nie są fizykami teoretycznymi, i absolutnie nie chodzi o wybitną sprawność manualną
Naprawdę dał się kolega nabrać, że średnie czasy mówią wiele o detalach konkretnych procesów albo że uzykane wyniki są fundamentalnie nie do policzenia przy pomocy mechaniki kwantowej?
Przynajmniej obcowanie z tematyką komputerów kwantowych powinno dać koledze do myślenia: powód dla którego chcemy je wykorzystać do rozwiązywania problemów "klasycznych" jest dokładnie tym samym dla którego nie jesteśmy w stanie efektywnie symulować ich pracy. Układy kwantowe są ciężkie do liczenia.
Jarek Duda, 17 października 2020, 18:22
A czy jesteśmy w stanie zbadać co dzieje się w centrum gwiazdy? Nie i raczej nigdy nie będziemy.
A czy przeszkadza nam to w budowaniu modeli gwiazdy - aż do centrum, tak żeby były wewnętrznie spójne? Też nie!
To samo z fizyką mikroskopową - pytanie o co tam się konkretnie dzieje, jakie są np. konfiguracje pól EM, co konkretnie dzieje się podczas produkcji fotonu, czy podczas tych 21as fotoemisji ... pytania które "zakon nie pytam" zakazuje zadawać.
Jarek Duda, 17 października 2020, 18:40
A kto się o to pyta? Ja się pytam szczególnie o konfigurację pola elektromagnetycznego i jego ewolucję, np. w kontekście fotonu optycznego - powstałego podczas deekscytacji atomu.
peceed, 17 października 2020, 19:03
No właśnie. Tylko że astronomowie nigdy się nie upierali, że słońce musi być rozgrzaną kulą żelaza.
A kolega wciąż się upiera przy mechanice klasycznej. Kluczową cechą jest wewnętrzna spójność, tę zapewnia tylko mechanika kwantowa.
Ja się boję, że kolega w ogóle sobie tego nie uświadamia, tej fiksacji klasycznej, bo utożsamia ją na jakimś poziomie z rzeczywistością, a mechanikę kwantową uznaje za abstrakcję problemów technicznych w poznawaniu tej rzeczywistości.
Przykro mi, ale pole elektromagnetyczne nie istnieje w mechanice kwantowej. Tzn. nie w sensie klasyczne pole elektromagnetyczne.
A wszędzie tak gdzie się wydaje że się je umieszcza, jest to jedynie tzw. "trick obliczeniowy" ( tutaj bardzo chciałbym aby kolega wyobraził sobie to sformułowanie wypowiadane przez Michała Wójcika z kabaretu Ani Mru Mru - może lepiej wejdzie ), gdy efektywnie godzimy się zapomnieć o detalach pola kwantowego.
Klasyczne pole elektromagnetyczne to jedynie przybliżenie nie nadające się do opisu rzeczywistości w małych skalach. Można sobie robić w głowie konfiguracje, stawiać przy nich angstremowe podziałki, ale nie mają one nic wspólnego z rzeczywistością. To jest wyłącznie ekstrapolacja opisu granicznego (będącego przybliżeniem) poza ogólny zakres stosowalności.
O polu EM (klasycznym) to można mówić w kontekście "mnóstwa" fotonów.
To taka filozofia w której mechanika kwantowa ma być opisem efektywnym bardzo skomplikowanych konfiguracji pól klasycznych, często z magicznymi właściwościami.
Niestety to nie działa, mechanika kwantowa daje przewidywania których nie da się odtworzyć z mechaniki klasycznej, a te przewidywania nieszczęśliwie odnoszą się do weryfikowalnych eksperymentalnie własności.
Jarek Duda, 17 października 2020, 20:52
Intrygujące! W takim razie ciekawe co to za potencjał używa równanie Schrodingera, czy co oznacza QED
W praktyce kwantowe modele buduje się zwykle na klasycznych - w tych drugich mamy jedną trajektorię/historię pola optymalizującą działanie ... przejście do kwantowych to rozważenie ich zespołu: trajektorii, diagramów Feynmana w perturbacyjnym QFT ...
Więc pozostaje pytanie: biorąc jeden obiekt z takiego zespołu, jaka konkretnie jest jego konfiguracja np. pola EM fotonów? Też pytania o średnie są dozwolone.
peceed, 17 października 2020, 23:38
Wyidealizowany. Pewnie nie zastanawiał się kolega jak nieoznaczoność położenia np. jądra wpływa na nieoznaczoność potencjału?
Tak jest najwygodniej, gdy się da. Ale te modele klasyczne nie są fundamentalne, one się pojawiają tylko jako granice MK.
Całki po trajektoriach to najgorsze sformułowanie do zrozumienia istoty mechaniki kwantowej, bardzo łatwo zignorować przestrzeń konieczną do opisu układów wielocząsteczkowych. Pięknie się to wszystko wyobraża dla 1 cząsteczki, ale układy złożone wyglądają całkowicie inaczej niż się to naiwnie wydaje, w tym sensie że ciężko zbudować dobre intuicje.
Biorąc pod uwagę, że trajektorie są całkiem niefizyczne nie ma szans aby istniała klasyczna konfiguracja EM którą można stowarzyszyć z ruchem cząsteczek po tej trajektorii. To raczej nie ma sensu.
Jarek Duda, 18 października 2020, 05:23
Sory ale elektromagnetyzm to praktycznie najbardziej podstawowe oddziaływanie w fizyce, ciężko sobie wyobrazić teorię kwantową bez niego - czyli np. bez oddziaływania elektron-jadro, czy bez fotonów.
Schrodinger rzeczywiście jest sporym uproszczeniem, używającym m.in. wspomniane przybliżenie Borna-Oppenheimera ... poważniejsze modele kwantowe to QFT, zwykle perturbacyjne - zespoły po scenariuszach: diagramach Feynmana ... które używają punktowe cząstki, ale wiemy że z naładowaną jest związane pole elektryczne - wypadałoby do tych diagramów Feynmana dorysować odpowiadające pola EM o co się pytam ... też pamiętając o ich skończonej prędkości propagacja - jak te 247 zeptosekund tutaj na przebycie orbitalu.
pinopa, 18 października 2020, 10:49
Istnieje poważne podejrzenie, że niemieccy badacze, którzy jakoby zmierzyli najkrótszy odcinek czasu o długości 247 zeptosekund, nie przedstawili całej prawdy. Podają oni , że zmierzony odcinek oni odcyfrowali na podstawie wykonanej fotografii, którą można zobaczyć na
.
W rzeczywistości z tego obrazka można cokolwiek odcyfrować, ale jedynie wtedy, gdy już wcześniej wiadomo, jaki ma być końcowy wynik. A końcowy wynik bardzo łatwo jest wyliczyć, gdy jest znana prędkość światła w próżni i odległość między atomami w molekule wodoru H2. Ta odległość wynosi 74 pm, czyli 74*10−12 m albo inaczej 740* 10−13 m. Prędkość promieniowania w próżni jest w przybliżeniu równa 300 tys. km/s, czyli 3*108 m/s. Gdy impuls promieniowania rentgenowskiego pokonuje drogę 3*108 m w ciągu 1 sekundy, to ten sam impuls pokonuje drogę 740* 10−13 m w ciągu 247*10−21sekundy, czyli w ciągu 247 zeptosekund. Jest to przybliżony wynik po obliczeniu równania x=(740/3)*10−21.
thikim, 18 października 2020, 13:51
Jak to zazwyczaj obaj macie rację a i tak się pokłócicie
Pytanie dobre. Tylko niestety pojęcie powstało przed rewolucją naukową z XX wieku i ma kilka znaczeń:
- cząstka światła - bardzo zawężone, potem stopniowo rozszerzane na inne zakresy energii
- kwant energii fali elektromagnetycznej - lepsze ale mało intuicyjne i często mylone z pierwszym.
A to jest pojęcie istniejące w dwóch odmiennych spojrzeniach: falowym i korpuskularnym.
I za Ch...ny się nie dogadacie jak będziecie go używać w różnych spojrzeniach.
Pierwotnym pojęciem jest pole. Jego mierzalne zaburzenia spełniają równania fotonu w ujęciu falowym.
Jak to Jarek jest że praktycznie każdy temat zmierza u Ciebie do punktowej naładowanej cząstki?
peceed, 18 października 2020, 18:05
Nie ma takiej opcji. W tym sensie, że "naładowane punkty w sumie po wszystkich historiach" to są jedynie obiekty matematyczne do obliczeń. Rozpatrywanie klasycznych konfiguracji pola em wokół tych punktów nie ma żadnego sensu, bo cząsteczka porusza się po trajektoriach nieróżniczkowalnych i nieprzyczynowych a pole EM musi spełniać równania pola!
Mechanika kwantowa to nie jest superpozycja klasycznych obrazów fizycznych, to błędna intuicja wynikła z zabawy komputerami kwantowymi.
Nie zmienia to faktu, że obraz wielu sytuacji fizycznych może być tak właśnie przybliżany (jak kot Schroedingera), ale to opcja a nie konieczność.
Musi kolega się zastanowić, gdzie w obrazie mentalnym następuje rezygnacja z operatorów i zaczyna bezpośrednie mówienie o wielkościach aktualnych.
To właśnie ten moment kiedy kończy się "fizyka".
Z zasady (a nie w szczegółach) to prawda: takie eksperymenty zwyczajnie badają konsystencje fizyki w małych skalach, pozwalając wyjaśnić obserwacje modelem, w którym występują 2 zdarzenia w krótkich odstępach czasowych, co jest zgodne z inną cechą tego modelu jak odległość pomiędzy "atomami" (skrót myślowy) .
Tak że otrzymano wynik, którego każdy się spodziewał, bo prawa fizyki działają.
Ale jakby ktoś z praw fizyki zasymulował sobie wielką pardubicką też byśmy mówili, że stoper zmierzył dokładnie to czego spodziwano się po koniach i co już było wiadomo
Prawdziwa jazda zaczyna się, kiedy widzi się sformułowania, że interferowały ze sobą 2 fotony wysłane z różnych miejsc.
Otóż nie. Interferowały zawsze dwie możliwości każdego z tych elektronów z osobna. Elektron nie do końca wie czy został uderzony jako pierwszy lub drugi, mamy superpozycję tych dwóch możliwości! (i już tutaj realistyczny obraz kolegi Jarka się rozpada całkowicie). Za to bardzo szczęśliwie 2 elektron z pary jest w dokładnie symetrycznej sytuacji, co pozwala zwulgaryzować opis i twierdzić, że 2 fotony interferowały ze sobą.
To strasznie nędzny skrót myślowy.
Molekuła wodoru to pojedynczy obiekt kwantowy który nie da się zrozumieć zlepieniem 2 atomów, więc światło nie dolatywało z jednego atomu do drugiego, a tyle wynosi odległość pomiędzy centrami zagęszczeń powłok.
To policzy sobie kolega sam jako ćwiczenie domowe z nauki teorii strun.
Wskazówka: Wystarczy rozpatrzyć czarną dziurę o rozmiarze łebka.
Szpilkę wybierze sobie kolega sam, bo jak widać wbijane przez niektórych szpilki po głębszej analizie okazują się bardzo (prawie nieskończenie) cieniutkie
Pole elektromagnetyczne to wciąż obiekt matematyczny, konstrukt umysłowy. Jego "fizyczność" wynika wyłącznie z faktu, że mógł się z nim kolega spotkać już w podstawówce gdy umysł był jeszcze elastyczny i chłonny, i wytrenował się w rozumieniu świata w jego kategoriach! Do tego wykorzystuje te struktury mózgowe które tak bardzo się dopracowały w czasie gdy jako małpki wielkości kapucynek zasuwaliśmy pod koronami drzew
Przy okazji, dostaniemy chyba górne ograniczenie na ilość tych diabłów, bez konieczności wnikania czym one są