Wewnętrzne jądro Ziemi powstało dzięki węglowi? Badania rzucają nowe światło na skład jądra
Jądro wewnętrzne Ziemi, sztywne bogate w żelazo ciało stałe o średnicy 1250 kilometrów powoli rośnie, w miarę jak płynne jądro zewnętrzne ochładza się i krystalizuje. Specjaliści od dawna nie mogą dość do porozumienia, kiedy rozpoczął się ten proces. Jedni uważają, że trwa on od ponad 2 miliardów lat, zdaniem innych to proces stosunkowo niedawny, liczący sobie nie więcej niż pół miliarda lat. Badań nie ułatwia fakt, że nie wystarczy po prostu stwierdzić, kiedy materiał jądra schłodził się na tyle, by skrystalizować.
Jeśli założymy, że jądro zbudowane jest z czystego żelaza, to temperatura topnienia żelaza wcale nie musi być punktem odniesienia dla określenia temperatury, w której ono krystalizuje. Tak jak woda może wymagać schłodzenia nawet do -30 stopni Celsjusza zanim spadnie grad, tak i żelazne jądro może potrzebować znacznie niższej temperatury, by krystalizować. Wcześniejsze badania pokazywały, że żelazne jądro musiałoby schłodzić się o 800–1000 stopni Celsjusza poniżej temperatury topnienia zanim skrystalizuje. Jednak symulacje pokazały, że gdyby osiągnęło tak niską temperaturę, doszłoby do gwałtownego wzrostu jądra wewnętrznego i zniknięcia pola magnetycznego Ziemi. Tymczasem badania sejsmiczne oraz badania magnetyzmu skał wykazały, że do takiego wydarzenia nigdy nie doszło.
Autorzy nowych badań uważają, że do powstania stałego jądra wystarczyło, by w przeszłości materiał schłodził się zaledwie o 250 stopni Celsjusza poniżej temperatury topnienia. Jak jednak możliwe jest tak niewielkie schłodzenie – pamiętajmy, że musimy uwzględniać tutaj też olbrzymie ciśnienie wewnątrz Ziemi – i ciągłe istnienie stałego jądra wewnętrznego? Naukowcy odpowiedzieli na to pytanie, symulując obecność w jądrze innych pierwiastków, takich jak krzem, siarka, tlen i węgiel. Każdy z nich istnienie w warstwach położonych powyżej, zatem może istnieć też w jądrze. A musimy tutaj opierać się na symulacjach, bo do samego jądra nie jesteśmy w stanie dotrzeć, by zbadać jego skład chemiczny.
Naukowcy przeprowadzili komputerową symulację jądra składającego się ze 100 000 atomów, które zostaje poddane ciśnieniu takiemu, jak we wnętrzu Ziemi. Śledzili w jaki sposób, w temperaturze stosunkowo niewiele niższej mogą tworzyć się tam zbitki atomów podobne do kryształów, które dały początek krystalizacji.
Badania dały zaskakujący wynik. Okazało się, że krzem i siarka, pierwiastki o których zawsze sądzono, że są obecne w jądrze, spowalniały krystalizację. Innymi słowy, gdyby powszechnie występowały one w jądrze, temperatura musiałaby spaść znacznie bardziej, by zaczęło się tworzyć jądro wewnętrzne. Natomiast obecność węgla przyspieszała krystalizację. Kolejne testy wykazały, że jeśli węgiel stanowi w jądrze 2,4% jego masy, to konieczne byłoby schłodzenie o 420 stopni Celsjusza poniżej temperatury topnienia żelaza. To zbyt dużo. Jeśli jednak węgiel to 3,8% masy jądra, wystarczy temperatura o 266 stopni niższa niż temperatura topnienia. To jedyny zakres, który wyjaśnia zarówno istnienie jądra wewnętrznego, jak i jego obecne rozmiary.
Wyniki badań sugerują, że w jądrze Ziemi węgla jest więcej niż przypuszczano i że bez jego odpowiedniego udziału, mogłoby nie dojść do powstania jądra wewnętrznego.
Ze szczegółowymi wynikami analizy można zapoznać się w artykule Constraining Earth’s core composition from inner core nucleation.
Komentarze (0)