Algorytm na smartfona lepiej diagnozuje niż lekarze
Przed czterema laty informowaliśmy, że na University of Oxford powstaje oprogramowanie, która na podstawie wyglądu twarzy ma rozpoznawać rzadkie choroby genetyczne i zdiagnozowało zespół Marfana u prezydenta Lincona. Nie tylko jednak Brytyjczycy pracują nad takim oprogramowaniem.
W najnowszym numerze Nature Medicine opisano aplikację Face2Gene. Wykorzystuje ona algorytmy maszynowego uczenia się oraz sieci neuronowe do klasyfikowania charakterystycznych ech twarzy świadczących o zaburzeniach rozwoju płodowego i układu nerwowego. Aplikacja na podstawie zdjęcia stawia prawdopodobną diagnozę i wymienia inne, mniej prawdopodobne.
Autorem oprogramowania jest firma FDNA z Bostonu. Jej specjaliści najpierw nauczyli aplikację odróżniać zespół Cornelii de Lange i zespół Angelmana, które przejawiają się charakterystycznymi cechami twarzy, od innych podobnych schorzeń. Nauczyli go też klasyfikowania różnych form genetycznych syndromu Noonana.
Następnie algorytmowi dano dostęp do ponad 17 000 zdjęć zdiagnozowanych przypadków obejmujących 216 schorzeń. Gdy następnie oprogramowanie miało do czynienia z zupełnie nową fotografią, potrafiło z 65-procentowym prawdopodobieństwem postawić prawidłową diagnozę. Gdy zaś mogło podjąć kilka prób, odsetek prawidłowych diagnoz zwiększał się do 90%.
FDNA chce udoskonalić swoją technologię, jednak w tym celu potrzebuje dostępu do większej ilości danych. Dlatego też Face2Gene jest bezpłatnie dostępna dla lekarzy i badaczy, którzy wykorzystują ten system do pomocy w diagnostyce rzadkich schorzeń genetycznych. Korzystają z niego też lekarze, którzy nie mają punktu zaczepienie i w ogóle nie potrafią wstępnie zdiagnozować pacjenta.
Współautorka artykułu na temat Face2Gene, Karen Gripp, jest genetykiem w szpitalu dziecięcym w stanie Delaware i głównym lekarzem w firmie FDNA. Mówi ona, że algorytm pomógł jej w zdiagnozowaniu dziewczynki, którą leczy od sierpnia. Dzięki niemu doktor Gripp stwierdziła, że dziecko cierpi na zespół Wiedemanna-Steinera. Czterolatka nie ma zbyt wielu cech charakterystycznych tej choroby. Jest niska jak na swój wiek, straciła większość zębów mlecznych i zaczęły jej rosną stałe zęby.
Gripp postawiła wstępną diagnozę, a następnie zaprzęgła do pracy Face2Gene. Zespół Wiedemanna-Steinera, bardzo rzadkie schorzenie spowodowane mutacją genu KTM2A, został przez aplikację wymieniony na czele listy prawdopodobnych schorzeń. Badania DNA potwierdziły diagnozę. Uczona mówi, że dzięki aplikacji mogła zawęzić liczbę potencjalnych chorób i uniknąć konieczności znacznie droższego szeroko zakrojonego badania DNA.
Face2Gene powoli staje się coraz doskonalszy. Obecnie program ma do dyspozycji już 150 000 fotografii na podstawie których się uczy. W sierpniu, podczas warsztatów dotyczących wad genetycznych przeprowadzono nieoficjalne porównanie algorytmu i lekarzy. Wzięło w nim udział 49 genetyków klinicznych. Ludzie i algorytm mieli do dyspozycji 10 zdjęć dzieci z dość dobrze rozpoznawalnymi cechami charakterystycznymi różnych chorób. Tylko w przypadku dwóch fotografii dobrą diagnozę postawiło ponad 50% ludzi. Face2Gene dobrze zdiagnozował 7 na 10 przypadków.
Polegliśmy całkowicie. Face2Gene był niesamowity, mówi Paul Kruszka, genetyk z US National Human Genome Research Institute. Jego zdaniem już wkrótce każdy pediatra i genetyk będzie miał tego typu aplikację i używał jej równie często jak stetoskopu.
Komentarze (1)
Ksen, 10 stycznia 2019, 01:59
Powinni jeszcze do tego dodać algorytm wyznaczający powodzenie terapii (na wzór algorytmu prognozującego rozwiązywalność śledztwa [1]), dzięki czemu pacjent dowiadywałby się od razu, czy warto iść do lekarza, czy też lepiej od razu się powiesić.
___________
1. Policja rezygnuje z trudnych śledztw, bo tak radzi algorytm