Elektrony jednak się spóźniają

| Technologia
Looking Glass (Fernando de Sousa), Creative Commons

Niemieccy naukowcy dokonali pomiarów najmniejszego odstępu czasowego spotykanego w naturze. Przy okazji obalili założenie, jakoby elektrony były wybijane przez światło z orbit atomów bez żadnego opóźnienia.

Fotoemisja to zjawisko opisane i wyjaśnione przez Einsteina ponad 100 lat temu. Polega ono na emisji elektronów przez atom. Dochodzi do niej w momencie, gdy światło padające na atom na tyle wzbudzi elektrony, że wypadają one ze swoich orbit.

Dotychczas sądzono, że do emisji elektronów dochodzi natychmiast po uderzeniu fotonów w atom, a zatem, że pomiędzy tymi wydarzeniami nie istnieje żadna przerwa czasowa.

Uczeni z Instytutu Maksa Plancka, Uniwersytetu Technicznego w Monachium oraz Uniwersytetu Ludwika Maxymiliana w Monachium wraz z kolegami z Austrii, Grecji i Arabii Saudyjskiej postanowili sprawdzić to, co dotychczas uchodziło za pewnik.

Naukowcy wykorzystali laser działający w bliskiej podczerwieni, który wysyłał w kierunku atomów neonu impulsy trwające mniej niż 4 femtosekundy (10-15 sekundy). Jednocześnie atomy były bombardowane impulsami w dalekim ultrafiolecie trwającymi 180 attosekund (10-18 sekundy).

Dzięki takiej konfiguracji naukowcy byli w stanie precyzyjnie określić, kiedy poszczególne elektrony opuściły swoje orbity. Okazało się, że elektrony z różnych orbit, mimo że były jednocześnie wzbudzane przez fotony, nie opuszczały ich w tym samym czasie. Opóźnienie jednych względem drugich wynosiło około 20 attosekund.

Opóźnieniem tym zajęli się następnie teoretycy z Austrii i Grecji. Skomplikowane wyliczenia matematyczne potwierdziły, że ma ono miejsce, jednak wynikało z nich, że nie powinno przekraczać 5 attosekund. Eksperci wyjaśniają, że różnice pomiędzy obliczeniami a eksperymentami mogą wynikać z natury atomów neonu. W ich skład wchodzi bowiem 10 elektronów, co czyni je na tyle skomplikowanymi, że współczesne superkomputery nie radzą sobie z przeprowadzaniem precyzyjnych obliczeń.

Teoretycy spekulują, że względne opóźnienie w opuszczaniu orbit może wynikać z faktu, że elektrony nie oddziałują tylko z jądrem atomu, ale też ze sobą nawzajem. A zatem położenie jednego elektronu w stosunku do innych decyduje o tym, kiedy sąsiedzi go "uwolnią" i umożliwią opuszczenie orbity.

elektron atom orbita laser