Polacy stworzyli sztuczny neuron polarytonowy. To krok ku budowie układu naśladującego mózg

| Technologia
Mateusz Król, źródło Wydział Fizyki UW

Współpraca naukowców z Wydziału Fizyki Uniwersytetu Warszawskiego i PAN zaowocowała powstaniem pulsującego neuronu stworzonego z fotonów. To podstawowy element fotonicznego procesora sieci neuronowych. Tego typu chipy, zwane układami neuromorficznymi, mają być w przyszłości podstawą systemów sztucznej inteligencji.

Systemy fotoniczne zapewniają dużą prędkość przesyłania informacji przy jednoczesnym niewielkim zużyciu energii. Ich wadą jest zaś słabe oddziaływanie pomiędzy sobą, przez co trudno je wykorzystać do wykonywania operacji obliczeniowych. Dlatego też polscy wykorzystali ekscytony, cząstki o bardzo małej masie, z którymi fotony silnie oddziałują. Gdy fotony i ekscytony zostaną razem umieszczone we wnęce optycznej, powstaje między nimi trwały układ cyklicznej wymiany energii, który jest kwazicząstką – polarytonem.

Polarytony mogą zaś, w odpowiednich warunkach, tworzyć kondensat Bosego-Einsteina. W tym stanie skupienia zaczynają tworzyć „superatom”, zachowujący się jak pojedyncza cząstka. Opierając się na naszym ostatnim eksperymencie, jako pierwsi zauważyliśmy, że kiedy polarytony są wzbudzane za pomocą impulsów laserowych, emitują impulsy światła przypominające pulsowanie neuronów biologicznych. Efekt ten jest bezpośrednio związany ze zjawiskiem kondensacji Bosego-Einsteina, które albo hamuje, albo wzmacnia emisję impulsów, wyjaśnia doktorantka Magdalena Furman z Wydziału Fizyki UW.

Autorami modelu teoretycznego, który pozwala połączyć badania nad polarytonami z modelem neuronu są doktor Andrzej Opala i profesor Michał Matuszewski. Proponujemy wykorzystać nowy paradygmat obliczeniowy oparty na kodowaniu informacji za pomocą impulsów, które wyzwalają sygnał tylko wtedy, gdy przybędą do neuronu w odpowiednim czasie po sobie, mówi doktor Opala. Innymi słowy, taki sposób pracy takiego sztucznego neurony ma przypominać pracę neuronów biologicznych, pobudzanych impulsami elektrycznymi. W neuronie biologicznym dopiero powyżej pewnego progu impulsów docierających do neuronu, sygnał przekazywany jest dalej. Polarytony mogą naśladować neuron biologiczny, gdyż dopiero po pobudzeniu pewną liczbą fotonów powstaje kondensat Bosego-Einsteinai dochodzi do emisji sygnału do kolejnego neuronu.

Mimo niewątpliwie interesujących badań, na wdrożenie pomysłu polskich uczonych przyjdzie nam jeszcze poczekać. Kondensat Bosego-Einsteina uzyskiwali oni w temperaturę zaledwie 4 kelwinów, którą można osiągnąć w ciekłym helu. Naszym kolejnym celem jest przeniesienie eksperymentu z warunków kriogenicznych do temperatury pokojowej. Potrzebne są badania nad nowymi materiałami, które pozwolą na uzyskanie kondensatów Bosego-Einsteina także w wysokich temperaturach. W Laboratorium Polarytonowym pracujemy nie tylko nad takimi substancjami, badamy też możliwość sterowania kierunkiem emitowanych fotonów, mówi profesor Jacek Szczytko z Wydziału Fizyki UW.

W badaniach nad układami neuromorficznymi naukowcy wciąż napotykają na nowe wyzwania. Nasz nowy pomysł na odtworzenie pulsowania neuronów biologicznych w domenie optycznej, może posłużyć do stworzenia sieci, a potem układu neuromorficznego, w którym informacje przesyłane są o rzędy wielkości szybciej i w sposób bardziej efektywny energetycznie w porównaniu do dotychczasowych rozwiązań, dodaje doktor Krzysztof Tyszka.

Szczegóły pracy zostały opisane na łamach Laser & Photonics Reviews.

neuron polarytonowy mózg sztuczna inteligencja foton