Nadchodzi rewolucja?
Nazwa firmy "Complete Genomics" nie jest obecnie zbyt szeroko rozpoznawalna. Wygląda jednak na to, że możemy o niej usłyszeć jeszcze wiele razy. Przedstawiciele przedsiębiorstwa planują uruchomienie usługi sekwencjonowania genomu człowieka za przełomową cenę 5000 dolarów.
Udostępnienie usługi klientom indywidualnym jest planowane na najbliższą wiosnę. Firma, mająca swoją siedzibę w kalifornijskim mieście Mountain View, opracowała technologię sekwencjonowania DNA pozwalającą na drastyczne obniżenie kosztów przeprowadzenia tego procesu. Dzięki jej wdrożeniu cena procedury spadła aż dwudziestokrotnie(!) w porównaniu do cen obowiązujących dotychczas.
Ułatwiony dostęp do usługi sekwencjonowania jest najważniejszym krokiem na drodze do tzw. medycyny spersonalizowanej. Zgodnie z jej założeniami, lekarz powinien mieć dostęp do danych o indywidualnych cechach pacjenta, dzięki czemu możliwe jest zoptymalizowanie sposobu leczenia, dawek podawanych leków itp. Dotychczas zbieranie informacji tego typu ograniczało się do pojedynczych genów, które analizowane były głównie w przypadku podejrzenia zwiększonego ryzyka wystąpienia ściśle okreslonej choroby. Teraz, gdy cena badania spadła do tej stosunkowo niedużej kwoty, istnieje ogromna szansa na zebranie znacznie większej ilości danych i wprowadzenie szeroko zakrojonych programów profilaktyki wielu chorób.
Przedstawiciele firmy planują, że w roku 2009 będzie ona w stanie przeprowadzić 1000 reakcji sekwencjonowania DNA, zaś w ciągu kolejnego roku zwiększy swoje "moce przerobowe" dwudziestokrotnie. Warto jednak zaznaczyć, że przedstawiciele Complete Genomics nie udostępnili jeszcze swoich danych żadnemu niezależnemu recenzentowi.
Jednym z założycieli firmy jest Craig Venter - prawdopodobnie najbardziej znany biotechnolog na świecie. Ponieważ naukowiec pracował już wcześniej nad projektem sekwencjonowania genomu człowieka, zebrane wówczas informacje służą dziś jako próba odniesienia wobec nowej technologii. Co ciekawe, jako materiał do badań wykorzystano wówczas własne DNA Ventera.
Aby przeprowadzić sekwencjonowanie DNA zgodnie z założeniami nowej metody, najpierw zostaje ono pocięte na krótkie fragmenty składające się z 80 nukleotydów, czyli jednostek kodujących informację genetyczną (cały genom ma ich aż 3 miliardy). Każdy z tych fragmentów jest następnie łączony z krótkimi syntetycznymi nićmi DNA, a następnie dochodzi do replikacji powstałych kompleksów z wykorzystaniem specjalnego enzymu. Ze względu na charakter fizykochemiczny syntetycznego fragmentu, ma on tendencję do bardzo ścisłego zwijania się do postaci zwanej nanopiłeczkami. Są one tak drobne, że na płytce o wielkości typowego szkiełka mikroskopowego mieści się ich około miliarda. Dzięki tak silnemu "upakowaniu" materiału genetycznego możliwe jest przeprowadzenie całej procedury na pojedynczej płytce, co pozwala na radykalną redukcję zużycia bardzo drogich odczynników.
Gdy nanopiłeczki zostaną osadzone na powierzchni szkiełka, przeprowadza się właściwą reakcję sekwencjonowania. W tym celu wykorzystuje się cząsteczki wzbogacone o barwniki fluorescencyjne. Każda z nich przyłącza się do DNA w losowym miejscu, lecz zawsze do ściśle określonego rodzaju nukleotydu. Powstałe kompleksy oświetla się następnie za pomocą lampy ultrafioletowej, by wywołać świecenie barwnych cząsteczek. Specjalna aparatura pozwala nie tylko na określenie, jaki nukleotyd został związany, lecz także na ustalenie jego pozycji w analizowanej sekwencji. W ten sposób, krok po kroku, możliwe jest odkrycie kolejności wszystkich elementów kodujących informację genetyczną danego osobnika. Schemat ilustrujący całą procedurę jest dostępny tutaj.
Losowe przyłączanie pojedynczych cząsteczek służących jako "sondy" wykrywające nukleotydy jest pomysłem bardzo nowatorskim. Ma ono co najmniej jedną istotną zaletę: zgodnie z założeniami dotychczasowych metod sekwencjonowania konieczne było poprawne odczytanie sekwencji wszystkich kolejnych nukleotydów. Powodowało to powstawanie licznych błędów w trakcie analizy, przez co wiarygodność testu spadała. W przypadku technologii opracowanej przez Complete Genomics każda "sonda" przyłącza się niezależnie od innych, dzięki czemu maleje ryzyko popełnienia "lawiny" błędów.
Co ciekawe, przedstawiciele Complete Genomics nie planują sprzedaży produkowanych przez siebie urządzeń. Zamiast tego uruchomione zostanie ogromne centrum badawcze, w którym realizowana będzie ta usługa. Jak tłumaczy prezes firmy, Cliff Reid, będzie to rozwiązanie bardzo wygodne dla wielu przedsiębiorstw: oni nie chcą kupować własnego instrumentu, chcą kupić dane. Co ciekawe jednak, sekwencja DNA klienta będzie do niego wracała w postaci "surowej", tzn. bez jakiejkolwiek analizy informacji zapisanych w genach. Oznacza to, niestety, że całkowity koszt usługi będzie najprawdopodobniej powiększony o dopłatę związaną z analizą danych przez innego specjalistę.
Środowisko naukowe nie kryje podziwu dla tego osiągnięcia. Chad Nusbaum, jeden z dyrektorów zarządzających Programem Sekwencjonowania i Analiz Genomu uruchomionym przez Broad Institute, ocenia: nagle ci goście zaczęli mówić o sekwencjonowaniu setek, a nawet tysięcy genomów w ciągu kilku najbliższych lat. Otwiera to niesamowite perspektywy na taki rodzaj nauki, jakiego naprawdę chcemy. Jest to możliwe właśnie dzięki uzyskiwaniu setek sekwencji ludzkiego genomu. Od tego momentu można zacząć zadawać trudne pytania na temat genetyk człowieka.
Podobnego zdania jest Jeffrey Schloss, specjalista pracujący dla amerykańskiego Narodowego Instytutu Badań nad Ludzkim Genomem: Słowo "oszałamiające" wcale nie będzie zbyt wielkie, jeżeli będą mogli to zrobić w naprawdę krótkim czasie. Nie widziałem jednak jakichkolwiek danych i nie znam nikogo, kto by je widział, a jest to, oczywiście, kluczowe.
Wyścig trwa. Biotechnologiczny gigant, firma Applied Biosystems, planuje udostępnienie w najbliższej przyszłości platformy, dzięki której możliwe będzie przeprowadzenie kompletnej analizy genomu za około 10 tysięcy dolarów. Która z firm wygra tę rywalizację, dowiemy się prawdopodobnie w ciągu najbliższych kilku lat.
Komentarze (6)
Jarek Duda, 9 października 2008, 19:36
Obiecujące są też techniki fizyczne - praktycznie bez cięcia próbujemy odczytać kolejne nukleotydy. Na przykład przykleić łańcuch do powierzchni i odczytać mikroskopem sił atomowych. Bardziej praktycznie wygląda używając tzw. nanoporów - wymuszamy różnicą potencjałów przechodzenie pojedyńczej nici przez cieńką szczelinę i używając wbudowanych w nią elektrod odczytujemy kolejne zasady. Niestety takie pory wymagają koszmarnej precyzji i na razie chyba działają tylko na komputerach...
A może dałoby się wykorzystać naturalne białka kopiujące/transkrybujące DNA ... zamocować i jakoś elektrycznie/magnetycznie czytać w jakim są aktualnie stanie...
mikroos, 9 października 2008, 19:44
Mnie tylko jedno dość mocno zastanawia. W jaki sposób oni to robią, że te nanopiłeczki układają się na szkiełku w jakimś określonym porządku (względnie: w jaki sposób maszyna odgaduje, w jakiej kolejności się rozłożyły)? Czy chodzi o jakąś sekwencję na syntetycznej nici, która kotwiczy do ściśle okreslonego miejsca na płytce, czy jak? W artykule źródłowym ani słowa na ten temat
Jarek Duda, 9 października 2008, 23:52
Jakto? "Millions of these overlapping pieces are then computationally stitched together to generate the entire sequence."
To jest gigantyczna praca komputera - szukać identycznych fragmentów w nakrywających się ciągach i łączyć je w jeden wielki...
Pytanie jak otrzymują ciągi o długości mniej więcej 80 zasad ... restryktazami chyba ciężko tak precyzyjnie? Wygląda jakby mieli enzym który wycina pojedyńczy histon?
mikroos, 10 października 2008, 00:03
Odcinki pomiędzy histonami mają po 180 pz, więc raczej ciężko jest mi to sobie wyobrazić. Poza tym ten cytat też nie do końca tłumaczy całe zagadnienie - przecież nawet jeśli odczytasz zawartość każdej piłeczki poprawnie, nie wiesz jeszcze, w jakiej kolejności należy odczytywać same piłeczki. No, chyba, że na płyce masz w rzeczywistości piłęczki zawierające kilka kopii genomu i możesz sobie z nich złożyć całość. A sondy może i nakładają się na siebie, ale każda z nich wykrywa tylko jeden nukleotyd, więc nakładanie się sond jeszcze nie oznacza, że można tak łatwo ustalić kolejność wszystkich nukleotydów. Co innego gdyby sonda wykrywała np. kilka sąsiednich nukleotydów, ale wykrywa tylko jeden, a reszta to uniwersalny kontekst, taki "zapychacz".
Jarek Duda, 10 października 2008, 08:56
Dany fragment pokrywa kilka z takich ciągów ("overlapping"), więc jeśli jakaś sekwecja się powtarza, możemy z dużym prawdopodobieństwem stwierdzić że to kontynuacja...
Owszem - to nie takie proste - na pewno są błędy podczas odczytywania, wiele sekwencji (szczególnie intronowych) ma wiele powtórzeń... za to mamy już kilka ludzkich DNA zsekwencjonowanych, co może pomóc we wstępnej lokalizacji fragmentu ...
Z histonami to chyba rzeczywiście przesadziłem ... wystarczy przecież pociąć byle jak a potem jednowymiarową elektroforezą wybrać wymagane długości ... tylko żeby rzeczywiście dostać ładny overlapping...
mikroos, 10 października 2008, 10:59
Czyli jednak wyjdzie na to, że rzeczywiście na jednej płytce, podczas jednej analizy, znajduje się kilka kopii jednego genomu. To by wyjaśniało wszystko, a nie jest to jasno napisane w artykule źródłowym.