Corona - nadzieja superkomputerów
HP ma zamiar stworzyć do 2017 roku 256-rdzeniowy procesor Corona, którego rdzenie będą komunikowały się ze sobą za pomocą łączy optycznych. Taka kość miałaby wykonywać 10 biliardów operacji zmiennoprzecinkowych na sekundę, zatem wydajność pięciu układów dorównywałaby wydajności współczesnych superkomputerów. Poszczególne rdzenie wymieniałyby dane z prędkością 20 terabitów na sekundę, a komunikacja między procesorem a pamięcią odbywałaby się z prędkością 10 Tb/s. Co więcej Corona zużywałaby znacznie mniej energii niż współczesne układy, dzięki czemu superkomputerom łatwiej będzie pokonać barierę eksaflopsa (1018 operacji zmiennoprzecinkowych na sekundę).
Obecnie istnieją dwa główne problemy, które znacznie utrudniają zwiększanie wydajności układów scalonych w dotychczasowym tempie. Im więcej rdzeni w procesorze, tym trudniej jest koordynować ich pracę i komunikować je ze sobą. Bardzo trudno jest uzyskać układ posiadający więcej niż 16 rdzeni, który pracowałby jak procesor równoległy. Drugi poważny problem to olbrzymi pobór mocy, który ma miejsce podczas przesyłania danych od i do układów pamięci.
Obie te przeszkody można rozwiązać za pomocą zintegrowanej fotoniki, czyli laserów i łączy optycznych wbudowanych w układ scalony. Przykładem takiej kości może być zaprezentowany właśnie przez IBM-a Holey Optochip. Nad podobnymi rozwiązaniami pracują też Intel (projekt Runnemede), Nvidia (Echelon), Sandia National Laboratory (X-calibur) czy MIT (Angstrom).
Najważniejszą jednak rolę odgrywa zintegrowana fotonika w projekcie Corona. Problem w tym, że część potrzebnej technologii wciąż jeszcze nie została opracowana. Jednak co się powoli zmienia. Od dłuższego już czasu informujemy o postępach na tym polu. Przez ostatnie lata wiele firm pracowało nad poszczególnymi podzespołami, teraz zaczęto łączyć je w układy. To jak przejście od tranzystora do układu scalonego - stwierdził Marco Fiorentino z HP Labs.
HP ma zamiar w każdy rdzeń Corony wbudować laser, który będzie wysyłał informacje do wszystkich innych rdzeni. Jak obliczają specjaliści wykorzystanie elektroniki do stworzenia 10-terabitowego kanału przesyłu danych pomiędzy CPU a pamięcią wymagałoby 160 watów mocy. Zdaniem HP, jeśli zastąpimy elektronikę zintegrowaną fotoniką, pobór mocy spadnie do 6,4 wata.
Zmniejszenie poboru mocy to dla superkomputerów niezwykle istotna sprawa. Najpotężniejsza maszyna na świecie, japoński K Computer, potrzebuje obecnie do pracy 12,6 MW. Jego wydajność wynosi 10,5 PFlops, trzeba by ją zatem zwiększyć niemal 100-krotnie by osiągnąć barierę eksaflopsa.
Zintegrowana fotonika przyczyni się również do obniżenia poboru mocy przez serwery i urządzenia telekomunikacyjne, co odgrywa olbrzymią rolę w internecie, którym przesyłamy coraz większą ilość danych. Z czasem lasery i łącza optyczne mogą trafić też do urządzeń przenośnych, pozwalający na ich dłuższą pracę bez potrzeby ładowania baterii. Również, co niezwykle istotne, w fotonice nie występuje problem interferencji elektromagnetycznej, zatem jej stosowanie np. w samochodach czy samolotach będzie bezpieczniejsze niż stosowanie urządzeń elektronicznych.
Problemem jest też stworzenie miniaturowych laserów, które można będzie budować za pomocą dostępnych technologii. Jako, że z krzemu nie można generować światła, specjaliści badają inne materiały, przede wszystkim arsenek galu i fosforek indu. Ostatnio MIT zainteresował się też germanem.
Trwają również intensywne prace nad rozwojem technologii TSV (through silicon vias). Pozwoli się ona pozbyć szyn, za pomocą których łączą się ze sobą poszczególne układy. Szyny stanowią dla danych wąskie gardło i zużywają sporo energii. TSV pozwala układać na sobie układy scalone (powstają w ten sposób układy 3D) i łączyć je kablami poprowadzonymi wewnątrz takiego stosu układów, co zwiększa przepustowość, a jednocześnie zmniejsza zużycie prądu i pozwala na zaoszczędzenie miejsca na płycie głównej.
W projekcie Corona HP chce połączyć obie technologie - 3D i zintegrowaną fotonikę. Dzięki temu ma powstać 256-rdzeniowy procesor zbudowany z 64-rdzeniowych klastrów. Całość zostanie wykonana w procesie 16 nanometrów i będzie połączona łączami optycznymi.
Komentarze (5)
thikim, 1 lipca 2014, 20:54
Już jest
"Tianhe-2 (Droga Mleczna-2) – superkomputer o mocy obliczeniowej 33,86 PFLOPS"
a więc 3 razy szybszy niż K Computer.
Trzeba przyznać że jeśli idzie o superkomputery postęp nie zwalnia.
Chociaż jednak myliłem się:
http://www.elektroda.pl/rtvforum/topic2857193.html
Zwalnia.
radar, 1 lipca 2014, 22:08
Co żeś Ty tu odkopał i jaki to ma związek z fotoniką w procesorze?
thikim, 2 lipca 2014, 08:14
Ma związek z treścią artykułu. Czytałeś artykuł??
radar, 2 lipca 2014, 08:43
No właśnie czytałem i powiem Ci, bez żadnych złośliwości, ja tu związku nie widzę.
thikim, 2 lipca 2014, 11:55
Jak nie ma związku jak jest takie zdanie w artykule?
To zdanie straciło już aktualność i do tego się odniosłem.