Jak zasilać bazę na Marsie? Na połowie powierzchni planety fotowoltaika lepsza od energii jądrowej

| Astronomia/fizyka
NASA

Ostatnie postępy w technologii fotowoltaicznej, pojawienie się wydajnych i lekkich ogniw słonecznych i duża elastyczność tej technologii powoduje, że fotowoltaika może dostarczyć całość energii potrzebnej do przeprowadzenia długotrwałej misji na Marsie, a nawet do zasilenia stałej osady – twierdzą naukowcy z University of California, Berkeley.

Abel AJ, Berliner AJ, et al. Front. Astron. Space Sci. 9:868519 NASA

Dotychczas większość specjalistów mówiących o logistyce misji na Czerwonej Planecie zakładała wykorzystanie technologii jądrowej. Jest ona stabilna, dobrze opanowana i zapewnia energię przez 24 godziny na dobę. To rozwiązanie na tyle obiecujące, że NASA od kilku lat prowadzi projekt Kilopower, którego celem jest stworzenie na potrzeby misji kosmicznych reaktora jądrowego o mocy do 10 kilowatów.

Problem z energią słoneczną polega zaś na tym, że w nocy Słońce nie świeci. Ponadto na Marsie wszechobecny pył zmniejsza efektywność paneli słonecznych. Przekonaliśmy się o tym w 2019 roku, gdy po 15 latach spędzonych na Marsie zasilany panelami słonecznymi łazik Opportunity przestał działać po wielkiej burzy pyłowej.

W najnowszym numerze Frontiers in Astronomy and Space Sciences ukazał się artykuł opisujący wyniki analizy, w ramach których porównano możliwości wykorzystania na Marsie energii ze Słońca z energią jądrową. Naukowcy z Berkeley analizowali scenariusz, w którym marsjańska misja załogowa trwa 480 dni. To bowiem bardzo prawdopodobny scenariusz misji na Marsa uwzględniający położenie planet względem siebie.

Analiza wykazała, że na ponad połowie powierzchni Marsa panują takie warunki, iż – uwzględniając rozmiary i wagę paneli słonecznych – technologia fotowoltaiczna sprawdzi się równie dobrze lub lepiej niż reaktor atomowy. Warunkiem jest przeznaczenie części energii generowanej za dnia do produkcji wodoru, który zasilałby w nocy ogniwa paliwowe marsjańskiej bazy.

Na ponad 50% powierzchni Marsa technologia fotowoltaiczna połączona z produkcją wodoru sprawdzi się lepiej niż generowanie energii z rozpadu jądrowego. Przewaga ta jest widoczna przede wszystkim w szerokim pasie wokół równika. Wyniki naszej analizy stoją w ostrym kontraście do ciągle proponowanej w literaturze fachowej energii jądrowej, mówi jeden z dwóch głównych autorów badań, doktorant Aaron Berliner.

Autorzy analizy wzięli pod uwagę dostępne technologie oraz sposoby ich wykorzystania. Pokazują, najlepsze scenariusze ich użycia, rozważają ich wady i zalety.

W przeszłości NASA zakładała krótkotrwałe pobyty na Marsie. Takie misje nie wymagałyby np. upraw żywności czy tworzenia na Marsie materiałów konstrukcyjnych lub pozyskiwania środków chemicznych. Jednak obecnie coraz częściej rozważne są długotrwałe misje, a w ich ramach prowadzenie działań wymagających dużych ilości energii byłoby już koniecznością. Trzeba by więc zabrać z Ziemi na Marsa komponenty do budowy źródeł zasilania. Tymczasem każdy dodatkowym kilogram obciążający rakietę nośną to olbrzymi wydatek. Dlatego też konieczne jest stworzenie lekkich urządzeń zdolnych do wytwarzania na Marsie energii.

Jednym z kluczowych elementów marsjańskiej stacji, którą takie źródła miałyby zasilać, będą laboratoria, w których genetycznie zmodyfikowane mikroorganizmy wytwarzałyby żywność, paliwo, tworzywa sztuczne i związki chemiczne, w tym leki. Berliner i inni autorzy analizy są członkami Center for the Utilization of Biological Engineering in Space (CUBES), które pracuje nad tego typu rozwiązaniami. Naukowcy zauważyli jednak, że cały ich wysiłek może pójść na marne, jeśli na Marsie nie będzie odpowiednich źródeł zasilania dla laboratoriów.

Dlatego też przeprowadzili analizę porównawczą systemu Kilopower z instalacjami fotowoltaicznymi wyposażonymi w trzy różne technologie przechowywania energii w akumulatorach i dwie technologie produkcji wodoru – metodą elektrolizy i bezpośrednio przez ogniwa fotoelektryczne. Okazało się, że jedynie połączenie fotowoltaiki z elektrolizą jest konkurencyjne wobec energetyki jądrowej. Na połowie powierzchni Marsa było to rozwiązanie bardziej efektywne pod względem kosztów niż wykorzystanie rozpadu atomowego.

Głównym przyjętym kryterium była waga urządzeń. Naukowcy założyli, że rakieta, która zabierze ludzi na Marsa, będzie zdolna do przewiezienia ładunku o masie 100 ton, wyłączając z tego masę paliwa. Obliczyli, jaką masę należy zabrać z Ziemi, by zapewnić energię na 420-dniową misję. Ku swojemu zdumieniu stwierdzili, że masa systemu produkcji energii nie przekroczyłaby 10% całości masy ładunku.

Z obliczeń wynika, że dla misji, która miałby lądować w pobliżu równika, łączna masa instalacji fotowoltaicznej oraz systemu przechowywania energii w postaci wodoru wyniosłaby około 8,3 tony. Masa reaktora Kilopower to z kolei 9,5 tony. Ich model uwzględnia nasłonecznienie, obecność pyłu i lodu w atmosferze, które wpływają na rozpraszanie światła słonecznego. Pokazuje też, jak w różnych warunkach optymalizować użycie paneli fotowoltaicznych.

Uczeni zauważają, że mimo iż najbardziej wydajne panele słoneczne są wciąż drogie, to jednak główną rolę odgrywają koszty dostarczenia systemu zasilania na Marsa. Niewielka masa fotowoltaiki i elastyczność jej użycia to olbrzymie zalety tej technologii. Krzemowe panele na szklanym podłożu zamknięte w stalowych ramach, jakie są powszechnie montowana na dachach domów, nie mogą konkurować z najnowszymi udoskonalonymi reaktorami. Ale nowe, lekkie elastyczne panele całkowicie zmieniają reguły gry, stwierdzają autorzy analizy.

Zwracają przy tym uwagę, że dzięki niższej masie można zabrać więcej paneli, więc będzie możliwość wymiany tych, które się zepsują. System Kilopower dostarcza więcej energii, zatem mniej takich reaktorów trzeba by dostarczyć, ale awaria jednego z urządzeń natychmiast pozbawiłaby kolonię znacznej części energii.

Mars misja baza zasilanie fotowoltaika energia jądrowa