Kwantowa konspiracja
Uruchamiając Wielki Zderzacz Hadronów (Large Hadron Collider) w europejskim laboratorium CERN uczeni mieli głęboką nadzieję na nowe odkrycia. Doczekali się takiego wcześniej niż sądzili, zanim aparatura doszła do połowy zaplanowanej mocy. Wyniki zderzeń protonów z aparatu CMS dały zaskakujące wyniki, które naukowców wprawiły w takie zmieszanie, że pół-żartem mówią: te cząsteczki są w zmowie.
Od kilku miesięcy przeprowadzane są kolizje proton - proton z najwyższymi dotąd używanymi energiami. Zderzające się z siłą siedmiu TeV (teraelektronowoltów) cząsteczki rozpryskują się na mniejsze cząsteczki, każde zderzenie pojedynczych protonów daje w efekcie ponad setkę różnych cząsteczek elementarnych, których pojawienie się i ucieczkę w losowych kierunkach rejestruje detektor CMS.
Kiedy w połowie września Gunther Roland (z amerykańskiego MIT) oraz Guido Tonelli (University of Pisa i National Institute of Nuclear Physics we Włoszech) przeanalizowali dane z 350 tysięcy zderzeń, jakie przeprowadzono od marca do sierpnia odkryli, że część z rejestrowanych cząsteczek nie zachowuje się tak, jak powinna. Zamiast po pojawieniu się umykać w losowym kierunku, łączą się w pary („parują się"), biegnąc w dokładnie przeciwnych kierunkach. Zupełnie, jakby się umawiały - jak określili to badacze - i pozostawały w jakimś związku pomimo że osiągają prędkość bliską prędkości światła.
Mimo że dotyczy to tylko kilku procent cząsteczek, odkrycie nie pasuje do istniejącego obrazu fizyki kwantowej. Przez jakiś czas szukano błędów w metodologii eksperymentów, które pozwoliłyby wyjaśnić anomalię w prosty sposób. Nie znaleziono takich, trzeba zatem stworzyć nowe hipotezy.
Tonelli i Roland są pewni, że rozwiązania trzeba szukać na gruncie chromodynamiki kwantowej, czyli dziedziny fizyki zajmującej się potężnymi siłami działającymi w cząsteczkach subatomowych. Nie wiadomo jednak, jaki element chromodynamiki mógłby wyjaśnić ten fenomen.
Próby wyjaśnienia anomalii podjął się teoretyk Larry McLerran (pracownik amerykańskiego Brookhaven National Laboratory w Upton). Uważa on, że przy odpowiednio olbrzymiej prędkości i energii zderzanych nukleonów wytwarza się nowy, ultragęsty stan materii, nazywany kondensatem kolorowego szkła (color glass condensate). „Kolorowego", ponieważ odnosi się do cząsteczek takich jak kwarki i gluony, których ładunki nazywa się kolorami. Zjawiskom w kondensacie kolorowego szkła towarzyszy ekstremalnie silne pole kolorowe - które można porównać do znanego nam pola elektrycznego lub magnetycznego. Podobnie jak rozpryskujące się w polu magnetycznym opiłki żelaza będą podążać wzdłuż linii pola, cząsteczki elementarne w detektorze CMS poruszają się wzdłuż linii pola kolorowego.
Podobne wyjaśnienie McLerran proponował wcześniej dla zjawiska parowania się cząsteczej podczas zderzeń ciężkich jonów w aparaturze Relativistic Heavy Ion Collider w amerykańskim narodowym laboratorium w Brookhaven.
Badania będą trwać, oczekuje się, że wraz ze zwiększaniem energii zderzeń zjawisko „zmowy cząsteczek", czyli łączenia się w pary będzie występować coraz częściej.
Komentarze (3)
crazylane, 28 września 2010, 14:05
Z całym szacunkiem, ale w LHC nie są zderzane cząsteczki, lecz cząstki elementarne - stanowi to kolosalną różnicę. Cząsteczką nazywamy przynajmniej dwa atomy połączone wiązaniem chemicznym, całość jest obojętna elektrycznie. Pozdrawiam.
waldi888231200, 28 września 2010, 23:01
tak z 3 rzędy wielkości.
leszczo, 11 maja 2011, 20:18
nie wiem co masz w gimnazjum z fizyki ale nie wiecej niz 2 napewno.
protony to faktycznie takie czastki elementarne ktore skadaja sie z kwarkow.
co do artykulu przestalem czytac w miejscu gdzie wymiar energii byl przyrownany do sily. ( Zderzające się z siłą siedmiu TeV )